Abstract:
A method of forming a partial retroreflector tool includes forming a substrate comprising a retroreflective microstructure pattern on a surface thereof. The surface of the substrate is machined to remove at least a portion of the retroreflective microstructure pattern to form a partial retroreflective microstructure pattern on the surface of the substrate to generate the partial retroreflector tool. A method of fabricating a partially retroreflective sheeting utilizing the partial retroreflector tool is also disclosed.
Abstract:
Methods for producing retroreflector tooling and retroreflective sheeting using laser writing techniques, and corresponding products thereof, are presented. In one embodiment, a seamless retroreflective sheet having a plurality of retroreflectors formed in a continuous retroreflective microstructured pattern is provided. In the methods described herein, a substrate having a photosensitive coating on a surface thereof is provided. A surface-relief microstructured pattern is produced in the photosensitive coating by selectively exposing the photosensitive coating to a beam of electromagnetic radiation. The exposed portions of the photosensitive coating are developed to form a retroreflective microstructured pattern on the surface of the substrate. The retroreflective microstructured pattern is then transferred into retroreflector tooling comprising the retroreflective microstructured pattern on a surface thereof. A retroreflective sheet containing the retroreflective microstructured pattern on a surface thereof is then formed from the retroreflector tooling.
Abstract:
A method for forming a retroreflective prism in a substrate includes inserting and retracting a single point diamond tool through a surface of the substrate while moving the single point diamond tool, the substrate, or both the single point diamond tool and the substrate in a direction of travel along at least one axis to generate a facet in the substrate having a facet face parallel to the direction of travel of at least one of the single diamond point tool or the substrate. The facet face has an angle defined by a chiseling edge of the single point diamond tool. The inserting and retracting is repeated at a plurality of locations on the substrate to form an array of retroreflective microstructures on the surface of the substrate. At least one of the array of retroreflective microstructures is a retroreflective prism having a polygonal projected aperture.
Abstract:
A system, and corresponding method for use, for providing a mass-producible retroreflective material, or sheeting, featuring full cube corner pins is presented. The full cube corner shaping may be provided with the use of a diamond turning tool. The diamond turning tool may be used to simultaneously manufacture a number of pins. The pins may be used to form a mold featuring a triangular or full cube corner surface formation.
Abstract:
A retroreflector structure with a plurality of cornercube prisms in a sheet and a projected aperture of at least one of the cornercube prisms has a concave polygon shape with at least one interior angle greater than 180°.
Abstract:
A method for forming a retroreflective prism in a substrate includes inserting and retracting a single point diamond tool through a surface of the substrate while moving the single point diamond tool, the substrate, or both the single point diamond tool and the substrate in a direction of travel along at least one axis to generate a facet in the substrate having a facet face parallel to the direction of travel of at least one of the single diamond point tool or the substrate. The facet face has an angle defined by a chiseling edge of the single point diamond tool. The inserting and retracting is repeated at a plurality of locations on the substrate to form an array of retroreflective microstructures on the surface of the substrate. At least one of the array of retroreflective microstructures is a retroreflective prism having a polygonal projected aperture.
Abstract:
Methods for producing tooling and sheeting using laser writing techniques, and corresponding products thereof, are presented. In one embodiment, a seamless sheet having a plurality of microstructures formed in a continuous microstructured pattern is provided. In the methods described herein, a substrate having a photosensitive coating on a surface thereof is provided. A surface-relief microstructured pattern is produced in the photosensitive coating by selectively exposing the photosensitive coating to a beam of electromagnetic radiation. The exposed portions of the photosensitive coating are developed to form a microstructured pattern on the surface of the substrate. The microstructured pattern is then transferred into retroreflector tooling comprising the microstructured pattern on a surface thereof. A sheet containing the microstructured pattern on a surface thereof is then formed from the retroreflector tooling.
Abstract:
Molds and methods for forming molds used to make retroreflective articles are disclosed. The mold includes a plurality of shims joined together wherein each of the shims comprises a plurality of alternating cube corners. Each of the cube corners includes three facets each comprising a planar surface, four exterior sides, and three interior edges. The three interior edges meet at an apex, wherein each of the cube corners shares, with an adjacent one of the cube corners, at least one exterior side intersected by a respective one of the interior edges of each of the adjacent cube corners. A retroreflective article is formed using the mold and the retroreflective article includes goemetric structures corresponding to the cube corners of the plurality of shims of the mold.
Abstract:
Novel light diffusers that include both bulk and surface diffuser elements are provided. One embodiment includes diffusing elements forming a structured coating on a substantially clear substrate. Another embodiment includes a bulk diffuser with a structured surface. Methods for making and methods of using the light diffusers are also disclosed.