摘要:
The present invention provides an improved process for selectively producing acetic acid and/or methyl acetate by the gas phase carbonylation of methanol with carbon monoxide; an improved process for producing acetic anhydride directly from the methyl acetate; and a novel method for sustaining the life time of a carbonylation or a hydroformylation catalyst by pretreating the carbon monoxide or the synthesis gas to be used in carrying out the gas phase carbonylation or the hydroformylation.
摘要:
Ethanol is produced economically by a gas phase carbonylation of methanol with carbon monoxide followed by a hydrogenation. Specifically, the inventive process comprises:(a) carbonylating methanol in a gas phase with carbon monoxide in a carbonylation reactor, said carbon monoxide being optionally in admixture of hydrogen, in the presence of a rhodium catalyst comprised of a rhodium compound and a second metallic component selected from the group consisting of an alkali metal, an alkaline earth metal, a transition metal and a mixture thereof, and supported on an inert material, and a halide co-catalyst under mild carbonylation conditions and a high GHSV(Gas Hourly Space Velocity) of methanol to produce a mixture of acetic acid and methyl acetate;(b) separating from the production mixture in a distillation column the acetic acid as a high boiling fraction thereof, and a mixture of the methyl acetate and the co-catalyst as a low boiling fraction thereof;(c) further separating said methyl acetate and the co-catalyst from the low boiling fraction and recycling the separated co-catalyst to the carbonylation reactor;(d) hydrogenating the separated methyl acetate with hydrogen gas in a hydrogenation reactor in the presence of a copper-containing hydrogenation catalyst to produce ethanol at a high yield.
摘要:
Acetic ester is produced economically by a gas phase carbonylation of methanol with carbon monoxide followed by a transesterification. Specifically, the inventive process comprises (a) carbonylating methanol in a gas phase with carbon monoxide to produce a mixture of acetic acid and methyl acetate; (b) separating from the production mixture the acetic acid, and a mixture of the methyl acetate and the co-catalyst; (c) further separating said methyl acetate and the co-catalyst and recycling the separated co-catalyst to the carbonylation reactor; (d) introducing the separated methyl acetate into a lower region of a transesterification reactor at a temperature of above its boiling point; (e) introducing an C.sub.2 or higher alcohol into an upper region of the trans-esterification reactor at a temperature of up to its boiling point; (f) transesterifying the methyl acetate with the alcohol in the presence of an acid catalyst to produce a mixture containing acetic esters; and (g) recovering the acetic esters from the mixture as a bottom product while recycling the unreacted methyl acetate and methanol to the carbonylation reactor or distillation column.