Abstract:
This invention concerns a process for the production of vinyl esters of carboxylic acids with 3 to 20 carbon atoms, via vinylation in the presence of palladium (Pd) catalyst in combination with copper (Cu) as co-catalyst stabilized by organic salts in the presence of ethylene and air or oxygen.
Abstract:
A process for ring hydrogenation of a benzenepolycarboxylic acid or derivative thereof, which process comprises contacting a feed stream comprising said acid or derivative thereof with a hydrogen-containing gas in the presence of a catalyst under hydrogenation conditions to produce a hydrogenated product, wherein said catalyst comprises a Group VIII metal, a support material and a halogen, and wherein the halogen is present in an amount of from 0.02 to 0.60% by weight, based on the total weight of the catalyst.
Abstract:
This application is in the field of technologies for desulfurization and demercaptanization of raw gaseous hydrocarbons (including natural gas, tail gas, technological gas, etc., including gaseous media). It can be used for simultaneous dehydration and desulfurization/demercaptanization of any kind of raw gaseous hydrocarbons.
Abstract:
This application is in the field of technologies for desulfurization and demercaptanization of raw gaseous hydrocarbons (including natural gas, tail gas, technological gas, etc, including gaseous media). It can be used for simultaneous dehydration and desulfurization/demercaptanization of any kind of raw gaseous hydrocarbons.
Abstract:
A waveguide for high efficiency transmission of high energy light useful in ablation procedures at predetermined bandwidths over predetermined distances comprising: an optical fiber core; a silanization agent; layered cladding surrounding the optical fiber core comprising: a first thin metal layer comprising at least two types of metals the first thin metal layer covalently bonded to the core and a second thin metal layer bonded to the second metal layer, and a catalyst component; wherein the silanization agent comprising organofunctional alkoxysilane molecule, such as 3-aminopropyltriethoxysilane (APTS), is a self supporting bridge between the surface of the optical fiber and the first metal layer; the first metal layer is uniformly chemisorbed onto the surface of the optical fiber by means of covalent Si—O—Si bonds with the optical fiber; further wherein the catalyst component derived from an activation solution for enhancing the layered cladding upon the optical fiber.
Abstract:
The object of the present invention is to provide a process for producing α-fluoroacrylic acid ester at a high starting material conversion, high selectivity, and high yield. The present invention provides a process for producing the compound represented by the formula (1) wherein R represents alkyl optionally substituted with one or more fluorine atoms, the process comprising step A of reacting a compound represented by the formula (2) wherein X represents a bromine atom or a chlorine atom with an alcohol represented by the formula (3) wherein the symbol is as defined above, and carbon monoxide in the presence of a transition metal catalyst and a base to thereby obtain the compound represented by the formula (1).
Abstract:
A process of preparing olefins of the formula (I) is described herein: with R1 being a substituted or unsubstituted (C1-C30)hydrocarbyl, and R2 being a substituted or unsubstituted (C1-C20)hydrocarbyl. The process includes reacting a compound of formula (II) wherein Ar is chosen from in the presence of a palladium-based catalyst and an organic solvent. A process of preparing olefins of the formula (III) is also described: with R3 being a substituted or unsubstituted (C1-C30)hydrocarbyl, R4 being a substituted or unsubstituted (C1-C20)hydrocarbyl, and R5 being a substituted or unsubstituted (C1-C30) hydrocarbyl. The process includes reacting a compound of formula (IV) wherein Ar is chosen from with a compound of formula (V) wherein Ar is chosen from in the presence of a palladium-based catalyst and an organic solvent.
Abstract:
This disclosure describes a method for regenerating a semi-regenerated reforming catalyst. The method comprises adjusting the reaction temperature to 250-480° C., introducing a sulfur-containing naphtha into the reforming reactor, or stopping introducing a feedstock into the reforming reactor, and introducing a sulfur-containing hydrogen into a recycle gas, until the sulfur content in the catalyst is 0.32-0.8 mass %, then the catalyst is subject to coke-burning, oxychlorination and reduction. Alternatively, the method first subjects the spent catalyst to coke-burning followed by introducing sulfate ions thereinto; and then performing oxychlorination and reduction. Disclosed is still another method for regenerating a platinum-rhenium reforming catalyst, which comprises coke-burning the spent catalyst; introducing sulfur and chlorine in the catalyst by impregnation; and then drying, calcinating and reducing.
Abstract:
A process is provided for preparing a spent noble metal fixed-bed catalyst for precious metals recovery, comprising: a) adding the catalyst to a caustic solution to wash the spent catalyst and to make a wash slurry having an alkaline pH, wherein the spent catalyst has been in contact with chloroaluminate ionic liquid catalyst, and wherein the spent catalyst comprises from 5 to 35 wt % chloride; and b) filtering the wash slurry and collecting: i) a filter cake having from at least 70 wt % of the chloride in the spent catalyst removed and having the noble metals retained, and ii) a wash filtrate. Also provided is a filter cake comprising a washed consolidated cake having 40 to 75 wt % solids, a cake moisture content from 25 to less than 60 wt %, 0.1 to 1.5 wt % total noble metals, and a residual chloride content of from zero to less than 4 wt %.