Abstract:
A configuration for purification of an exhaust gas flow of an internal combustion engine includes at least one exhaust gas line having an element for exhaust gas purification with a first end face and a second end face. The exhaust gas flows through the element from the first end face to the second end face. An adding device is provided downstream of the element for adding a reactant to the exhaust gas flow. The adding device is positioned at a distance of no more than 30 mm from the second end face of the element in such a way that at least part of the added reactant strikes the second end face of the element. A method for adding a reactant into an exhaust line during the operation of an internal combustion engine is also provided.
Abstract:
A configuration for purification of an exhaust gas flow of an internal combustion engine includes at least one exhaust gas line having an element for exhaust gas purification with a first end face and a second end face. The exhaust gas flows through the element from the first end face to the second end face. An adding device is provided downstream of the element for adding a reactant to the exhaust gas flow. The adding device is positioned at a distance of no more than 30 mm from the second end face of the element in such a way that at least part of the added reactant strikes the second end face of the element. A method for adding a reactant into an exhaust line during the operation of an internal combustion engine is also provided.
Abstract:
A method for adding at least one, in particular liquid, reactant, to an exhaust gas stream of an internal combustion engine includes adding a reactant flow to the stream downstream of an element provided for an at least partial conversion and/or at least partial elimination of at least one component of the stream, so that at least part of the reactant flow impinges on the element. This achieves rapid evaporation of the reactant flow. Impinging on the element, which is hot during operation, i.e. at temperatures of 400° C. and more, causes rapid evaporation and, because of a preferably porous coating of the element, take-up of the reactant solution into the element with successive evaporation. Urea, in particular, can be evaporated quickly, effectively and virtually completely upon introduction into an exhaust system as a reducing agent for selective catalytic reduction of nitrogen oxides, in particular in a downstream SCR catalytic converter.
Abstract:
A method for adding at least one, in particular liquid, reactant, to an exhaust gas stream of an internal combustion engine includes adding a reactant flow to the stream downstream of an element provided for an at least partial conversion and/or at least partial elimination of at least one component of the stream, so that at least part of the reactant flow impinges on the element. This achieves rapid evaporation of the reactant flow. Impinging on the element, which is hot during operation, i.e. at temperatures of 400° C. and more, causes rapid evaporation and, because of a preferably porous coating of the element, take-up of the reactant solution into the element with successive evaporation. Urea, in particular, can be evaporated quickly, effectively and virtually completely upon introduction into an exhaust system as a reducing agent for selective catalytic reduction of nitrogen oxides, in particular in a downstream SCR catalytic converter.