摘要:
Methods, systems and devices for diffractive waveplate lens and mirror systems allowing electronically focusing light at different focal planes. The system can be incorporated into a variety of optical schemes for providing electrical control of transmission. In another embodiment, the system comprises diffractive waveplate of different functionality to provide a system for controlling not only focusing but other propagation properties of light including direction, phase profile, and intensity distribution.
摘要:
Methods, systems and devices for diffractive waveplate lens and mirror systems allowing electronically focusing light at different focal planes. The system can be incorporated into a variety of optical schemes for providing electrical control of transmission. In another embodiment, the system comprises diffractive waveplate of different functionality to provide a system for controlling not only focusing but other propagation properties of light including direction, phase profile, and intensity distribution.
摘要:
This invention discloses methods and apparatus for providing a variable optic insert into an ophthalmic lens. A liquid crystal layer may be used to provide a variable optic function and in some embodiments, an alignment layer for the liquid crystal layer may be patterned in a radially dependent manner. The patterning may allow for the index of refraction of the optic device to vary in a gradient indexed or GRIN manner. At least a first layer of dielectric material that may vary in thickness at least across the optic zone of the device may aid in defining an electric field across the liquid crystal layer. An energy source is capable of powering the variable optic insert included within the ophthalmic lens. In some embodiments, an ophthalmic lens is cast-molded from a silicone hydrogel. The various ophthalmic lens entities may include electroactive liquid crystal layers to electrically control optical characteristics.