摘要:
Aspects of the present disclosure describe large scale steerable optical switched arrays that may be fabricated on a common substrate including many thousands or more emitters that may be arranged in a curved pattern at the focal plane of a lens thereby allowing the directional control of emitted light and selective reception of reflected light suitable for use in imaging, ranging, and sensing applications including accident avoidance.
摘要:
A modular routing node includes a single input port and a plurality of output ports. The modular routing node is arranged to produce a plurality of different deflections and uses small adjustments to compensate for wavelength differences and alignment tolerances in an optical system. An optical device is arranged to receive a multiplex of many optical signals at different wavelengths, to separate the optical signals into at least two groups, and to process at least one of the groups adaptively.
摘要:
A wavelength selective switch (WSS) includes a liquid crystal on silicon (LCOS) panel and a fiber array with multiple ports. The two outermost ports of the multiple ports are a first port and a second port. An included angle between an intersecting line of the LCOS panel and a first plane in which the incident light entering the LCOS panel and emergent light exiting the LCOS panel are located, and incident light entering the LCOS panel is (90−θ) degrees, where a wavelength of the incident light is same as a wavelength of the emergent light, θ is less than 15 degrees, the first port and the included angle of (90−θ) degrees are located on a same side of the incident light, and the second port and the included angle of (90−θ) degrees are separately located on two sides of the incident light.
摘要:
We describe methods and devices for manipulating optical signals. A method of manipulating an optical signal comprises providing a device (100) comprising a layer (106) of blue phase liquid crystal in the path of the optical signal; and applying a dynamically varying spatial pattern of voltages across the layer (106) of blue phase liquid crystal, thereby causing the refractive index of the layer (106) of blue phase liquid crystal to vary according the dynamically varying spatial pattern.
摘要:
Methods and devices for manipulating optical signals. In one example, a LCOS (liquid crystal on silicon) device includes a surface bearing an anti-reflection structure. The anti-reflection structure includes i) a physical surface having a topography with features having lateral dimensions of less than 2000 nm and having an average refraction index which decreases with distance away from the surface; and ii) a configuration of the topography, averaged over lateral dimensions of greater than 2000 nm, varies with lateral position on the surface.
摘要:
A method and a controller for operating an array of variable optical retarders are disclosed. Neighboring pixels of the array of variable optical retarders are driven with disordered temporal bit sequences. An optical beam illuminating the pixels tends to integrate time-domain modulation caused by individual pixels driven in a non-coordinated or disordered fashion, which reduces the overall time-domain modulation amplitude of the optical beam.
摘要:
A wavelength selective switch 1A includes a first port 11 and second ports 12a to 12d; a wavelength dispersive element 15; and a phase modulation element 17. Wavelength components L21 to L23 deflected by the phase modulation element 17 are respectively incident to the desired second ports 12b to 12d. A first control voltage pattern is supplied to the phase modulation element 17 in such a way that when the optical path of a wavelength component is switched from one to another of the second ports, the amount of phase modulation of a pre-switching phase modulation pattern is reduced while the period of a diffraction grating is maintained, and thereafter, a second control voltage pattern is supplied to the phase modulation element 17 so as to present a post-switching phase modulation pattern.
摘要:
The discloser provides a multi-input and multi-output optical switch capable of switching over all WDM wavelengths. An optical switch according to one embodiment includes: an optical demultiplexing element (3) that demultiplexes an optical signal from at least one input port into individual wavelengths; a first optical deflection element (5), which deflects an incident optical signal, that deflects the wavelength-separated optical signal incoming from the optical demultiplexing element to change a traveling direction for each wavelength to a switch axis direction perpendicular to a wavelength dispersion axis direction; a second optical deflection element (8) that deflects the optical signal incoming from the first optical deflection element to change the traveling direction to the switch axis direction for output to at least one of the output ports; and an optical multiplexing element (10) that multiplexes the optical signal with the different wavelengths incoming from the second optical deflection element.
摘要:
Methods, systems and devices for diffractive waveplate lens and mirror systems allowing electronically focusing light at different focal planes. The system can be incorporated into a variety of optical schemes for providing electrical control of transmission. In another embodiment, the system comprises diffractive waveplate of different functionality to provide a system for controlling not only focusing but other propagation properties of light including direction, phase profile, and intensity distribution.
摘要:
In a wavelength selective switch, a holding member is used to rotate one end of optical fibers and a collimator array around a rotation axis to thereby change an incident angle of collimated light with respect to incident surfaces of a beam expander optical system. When the incident angle of the collimated light on the beam expander optical system is changed, an amount of variation in an emission angle of light from the beam expander optical system is not proportional (inversely proportional) to the magnification of the beam expander optical system. Thus, this wavelength selective switch can easily fine-tune the incident position (beam position) of light with respect to each reflecting surface of a MEMS mirror by rotating the holding member.