摘要:
In one embodiment, a dual-mode earphone is provided, comprising a first earbud including a speaker with a diaphragm and at least one acoustic port in front of the diaphragm, and a cap in front of the speaker. The speaker or the cap is configured to move relative to the other for opening and closing the acoustic port in one embodiment and a movable seal is provided in another embodiment. The earphone further includes a second earbud housing operably coupled to the first earbud opposite the speaker. A method for providing acoustic equalization in a dual-mode earphone is also disclosed.
摘要:
A sound sensing apparatus such as a communication headset uses a microphone and an acoustic valve controlled by a movable boom to operate in at least a compact and an extended-boom mode, with the valve variously coupling the microphone to different openings on the boom or the main body functioning as the acoustic sensing point.
摘要:
A headset is disclosed. The headset includes an earpiece, a voice conducting and connecting system and a microphone connected to the voice conducting and connecting system, the microphone being capable of operating in a directional configuration and in an omnidirectional configuration.
摘要:
Personal audio method and devices, such as headphones, telephone handsets and headsets, with reduced audio leakage are disclosed. The personal audio device generally comprises a housing having a first portion and a second portion and a transducer disposed in the housing and having a first and second opposing sides. A rear volume is defined between the housing second portion and the transducer second side, and a front volume is defined between the housing first portion and the user's ear. The housing has a front acoustic port acoustically connecting the front volume to ambient air and a rear acoustic port acoustically connecting an otherwise sealed rear volume to ambient air. The front and rear acoustic ports may be configured so that their extent is small, e.g., less than 20 or more preferably 10 times the square root of their total acoustic radiating area. The front and rear acoustic ports may be configured so that their acoustic centers are separated by a small distance, e.g., less than four or more preferably two times the effective diameter of the transducer.
摘要:
Personal communication method and apparatus, such as telephone handsets and headsets, with acoustic stray field cancellation are disclosed. The personal communications device employs an echo canceling receiver generally including two displacement sources that are not in phase formed by at least one driver, an acoustic cavity corresponding to each displacement source, and an acoustic output port corresponding to and in acoustic connection with each displacement source via the corresponding acoustic cavity such that the acoustic length between the acoustic centers of the two ports is less than the distance between the acoustic center of each port and the acoustic center of the corresponding displacement source to which the port is acoustically connected. In another embodiment, the ports may be such that both ports are located on a same side of a surface of at least one of the displacement sources. As an example, the personal listening device may have at least two ports and a dedicated driver acoustically coupled to each port. The personal communication device may further include a transmit module. The ports may be driven and tuned such that when the device is worn, the ratio of acoustic pressure at a first location, e.g., the ear, to acoustic pressure at a second location, e.g. the transmit module, is substantially greater than that with either port acting alone. In another embodiment, the receiver ports are driven and tuned such that when the device is worn, the ratio of acoustic pressure at the first location to sound pressure gradient in a given direction at the second location is substantially greater than that with either port acting alone. The receiver thus achieves echo canceling for high frequencies.
摘要:
A loudspeaker system includes an upper frequency assembly that radiates acoustical energy having spectral components in the audio frequency range above a predetermined upper frequency, typically at the high end of the bass frequency range between 150 and 200 Hz. The assembly includes a ported enclosure with a front face enclosing a loudspeaker driver with a cone adjacent to the front face of diameter slightly less than at least one of the height and width of the enclosure.
摘要:
A communications headset has a microphone boom that is moveable through various distances from the user's mouth, in which movement of the boom operates electrical, mechanical or acoustic mechanisms to adjust the transmit sensitivity of the headset such that the ratio of the amplitude of the output signal of the headset to the amplitude of the sound pressure at the vicinity of the user's mouth is maintained relatively constant, independently of the position of the microphone boom.
摘要:
A communications headset has a microphone boom that is moveable through various distances from the user's mouth, in which movement of the boom operates electrical, mechanical or acoustic mechanisms to adjust the transmit sensitivity of the headset such that the ratio of the amplitude of the output signal of the headset to the amplitude of the sound pressure at the vicinity of the user's mouth is maintained relatively constant, independently of the position of the microphone boom.
摘要:
Systems and methods for a noise canceling microphone and microphone system are disclosed. The system generally includes a housing with a printed circuit board forming a surface of the housing. Electrical terminals are located on an exterior side of the printed circuit board. A diaphragm is disposed within the housing. A first port in the housing remote from the printed circuit board provides access to one face of the diaphragm first face and a second port disposed in the housing remote from the printed circuit board provides access to a second face of the diaphragm.
摘要:
A headset is disclosed. The headset includes an earpiece, a voice conducting and connecting system and a microphone connected to the voice conducting and connecting system, the microphone being capable of operating in a directional configuration and in an omnidirectional configuration.