Abstract:
A method of growing a p-type doped Group II-VI semiconductor film includes the steps of forming a lattice comprising a Group II material and a Group VI material and generating a first Group V flux by evaporating a solid Group V source material. The first Group V flux is then decomposed to generate a second Group V flux, which is, in turn, provided to the lattice to p-type dope the growing film. The Group V source material may by arsenic such that the second Group V flux may predominantly include dimeric arsenic decomposed from tetrameric arsenic to improve the incorporation of arsenic into the Group VI sublattice of the lattice.
Abstract:
An array 1 of photodiodes 2 is comprised of a Group II-VI material, such as HgCdTe, which may be selectively doped to form a plurality of diode junctions. Array 1 is comprised of a plurality of photodiodes 2 which are disposed in a regular, two dimensional array. Incident IR radiation, which may be long wavelength, medium wavelength or short wavelength (LWIR, MWIR or SWIR) radiation, is incident upon a surface of the array 1. The array 1 comprises a radiation absorbing base layer 3 of Hg.sub.1-x Cd.sub.x Te semiconducting material, the value of x determining the responsivity of the array to either LWIR, MWIR or SWIR. Each of the photodiodes 2 is defined by a mesa structure, or cap layer 3; or the array 1 of photodiodes 2 may be a planar structure. Each of the photodiodes 2 is provided with an area of contact metallization 4 upon a top surface thereof, the metallization serving to electrically couple an underlying photodiode to a readout device. The upper surface of the array 1 is provided with, in accordance with the invention, a passivation layer 5 comprised of an epitaxial layer of Group II-VI material which forms a heterostructure with the underlying Group II-VI material and which has a wider bandgap than the underlying Hg(.sub.1-x)Cd.sub.x Te, thereby beneficially repelling both holes and electrons from the diode junctions.
Abstract:
A method of growing a p-type doped Group II-VI semiconductor film includes the steps of forming a lattice comprising a Group II material and a Group VI material wherein a cation-rich condition is established at a surface of the lattice. The method further includes the steps of generating an elemental Group V flux by evaporating an elemental Group V material and providing the elemental Group V flux to a Group VI sublattice of the lattice.
Abstract:
A molecular beam epitaxy (MBE) growth method and apparatus is disclosed which achieves a significantly improved sticking coefficient for materials like Hg upon a substrate, and thus a higher efficiency. A highly ionized, low pressure plasma is formed consisting of a mixture of ions of one substance of a compound to be epitaxially grown, neutral particles of the substance and electrons, and also preferably both ionization and excitation radiation. The plasma is directed onto a substrate together with a flux of the other substance in the compound; the flux can be in the form of either a vapor, or a second plasma. Radiation assisted epitaxial growth for Hg compounds in which ionization and excitation radiation are formed from Hg vapor and used to assist epitaxial growth with neutral Hg particles is also described. The plasma is formed in a special discharge chamber having a hollow cathode with an emissive-mix-free cathode insert. The source is preferably a refractory metal such as rolled tantalum foil, which is substantially emissive-material-free and does not contaminate the plasma. Good results are obtained by allowing the plasma to simply diffuse out through an exit port in the discharge chamber, without special extraction assemblies required by prior ion thrusters. Hg sticking coefficients have been improved by a factor of 40 or more.
Abstract:
P-type doping of a molecular beam epitaxy (MBE) grown substrate composed of a Group II-VI combination is accomplished by forming a flux from a Group II-V combination, and applying the flux to the substrate at a pressure less than about 10.sup.-6 atmosphere. The Group II material is selected from Zn, Cd, Hg and Mg, the Group V material from As, Sb and P, and the Group VI material from S, Se and Te. The Group II-V dopant combination is preferably provided as a compound formed predominantly from the Group II material, and having the formulation X.sub.3 Y.sub.2, where X is the Group II material and Y is the Group V material. The doping concentration is controlled by controlling the temperature of the Group II-V combination. Metal vacancies in the lattice structure are tied up by the Group II constituent of the dopant combination, leaving the Group V dopant available to enter the Group VI sublattice and produce a p-type doping.
Abstract:
A molecular beam epitaxy (MBE) growth method and apparatus is disclosed which achieves a significantly improved sticking coefficient for materials like Hg upon a substrate, and thus a higher efficiency. A highly ionized, low pressure plasma is formed consisting of a mixture of ions of one substance of a compound to be epitaxially grown, neutral particles of the substance and electrons, and also preferably both ionization and excitation radiation. The plasma is directed onto a substrate together with a flux of the other substance in the compound; the flux can be in the form of either a vapor, or a second plasma. Radiation assisted epitaxial growth for Hg compounds in which ionization and excitation radiation are formed from Hg vapor and used to assist epitaxial growth with neutral Hg particles is also described. The plasma is formed in a special discharge chamber having a hollow cathode with an emissive-mix-free cathode insert. The source is preferably a refractory metal such as rolled tantalum foil, which is substantially emissive-material-free and does not contaminate the plasma. Good results are obtained by allowing the plasma to simply diffuse out through an exit port in the discharge chamber, without special extraction assemblies required by prior ion thrusters. Hg sticking coefficients have been improved by a factor of 40 or more.