摘要:
A method of growing a p-type doped Group II-VI semiconductor film includes the steps of forming a lattice comprising a Group II material and a Group VI material and generating a first Group V flux by evaporating a solid Group V source material. The first Group V flux is then decomposed to generate a second Group V flux, which is, in turn, provided to the lattice to p-type dope the growing film. The Group V source material may by arsenic such that the second Group V flux may predominantly include dimeric arsenic decomposed from tetrameric arsenic to improve the incorporation of arsenic into the Group VI sublattice of the lattice.
摘要:
A method for fabricating a fuel cell component includes the steps of providing a mask having a plurality of radiation transparent apertures, a radiation-sensitive material having a sensitivity to the plurality of radiation beams, and a flow field layer. The radiation-sensitive material is disposed on the flow field layer. The radiation-sensitive material is then exposed to the plurality of radiation beams through the radiation transparent apertures in the mask to form a diffusion medium layer with a micro-truss structure.
摘要:
A method for fabricating a radiation-cured structure is provided. The method includes the steps of providing a first radiation-sensitive material and applying a second radiation-sensitive material to the first radiation-sensitive material. The first radiation-sensitive material has a first sensitivity. The second radiation-sensitive material has a second sensitivity different from the first sensitivity. At least one mask is placed between at least one radiation source and the first and second radiation-sensitive materials. The mask has a plurality of substantially radiation-transparent apertures. The first and second radiation-sensitive materials are then exposed to a plurality of radiation beams through the radiation-transparent apertures in the mask to form a first construct in the first radiation-sensitive material and a second construct in the second radiation-sensitive material. The first construct and the second construct cooperate to form the radiation-cured structure.
摘要:
A fuel cell component is provided, including a substrate disposed adjacent at least one radiation-cured flow field layer. The flow field layer is one of disposed between the substrate and a diffusion medium layer, and disposed on the diffusion medium layer opposite the substrate. The flow field layer has at least one of a plurality of reactant flow channels and a plurality of coolant channels for the fuel cell. The fuel cell component may be assembled as part of a repeating unit for a fuel cell stack. A method for fabricating the fuel cell component and the associated repeating unit for the fuel cell is also provided.
摘要:
A combined subgasket and membrane support for a fuel cell is provided. The combined subgasket and membrane support includes a substantially fluid impermeable feed region circumscribing a porous membrane support region. The membrane support region is integrally formed with the feed region. At least one of the membrane support region and the feed region is at least partially formed by a radiation-cured structure. A method for fabricating the subgasket and membrane support for the fuel cell is also provided.
摘要:
A multi-layered semiconductor apparatus capable of producing at least 500 W of continuous power includes at least two device substrates arranged in a stack. Each of the at least two device substrates has a first side and a second side opposite to the first side, and each of the at least two device substrates is configured to produce an average power density higher than 100 W/cm2. A plurality of active devices are provided on the first side of each of the at least two device substrates. The plurality of active devices are radiatively coupled among the at least two device substrates. At least one of the at least two device substrates is structured to provide a plurality of cavities on its second side to receive corresponding ones of the plurality of active devices on the first side of an adjacent one of the at least two device substrates.
摘要翻译:能够产生至少500W的连续功率的多层半导体装置包括布置在堆叠中的至少两个器件衬底。 所述至少两个器件衬底中的每一个具有与第一侧相对的第一侧和第二侧,并且所述至少两个器件衬底中的每一个被配置为产生高于100W / cm 2的平均功率密度。 多个有源器件设置在至少两个器件衬底中的每一个的第一侧上。 多个有源器件辐射耦合在至少两个器件衬底之间。 所述至少两个器件衬底中的至少一个被构造成在其第二侧上提供多个空腔,以在所述至少两个器件衬底中相邻的器件衬底的第一侧上接收所述多个有源器件中的相应的空穴。
摘要:
A method for assembling an electronic system with a plurality of layers. Recesses in formed in one or more dielectric layers and electronic components are positioned within the recesses. One or more layers containing the components are placed on a host substrate containing host circuits. Electrical interconnects are provided between and among the electronic components in the dielectric layers and the host circuits. The layers containing the components may also be provided by growing the electronic devices on a growth substrate. The growth substrate is then removed after the layer is attached to the host substrate.
摘要:
A heterogeneous integrated circuit and method of making the same. An integrated circuit includes a surrogate substrate including a material selected from the group consisting of Group II, Group III, Group IV, Group V, and Group VI materials and their combinations; at least one active semiconductor device including a material combination selected from the group consisting of Group IV-IV, Group III-V and Group II-VI materials; and at least one transferred semiconductor device including a material combination selected from the group consisting of Group IV-IV, Group III-V and Group II-VI materials. The at least one active semiconductor device and the at least one transferred device are interconnected.
摘要:
A method for manufacturing a photodiode including the steps of providing a substrate, solution depositing a quantum nanomaterial layer onto the substrate, the quantum nanomaterial layer including a number of quantum nanomaterials having a ligand coating, and applying a thin-film oxide layer over the quantum nanomaterial layer.
摘要:
A polymer-infused carbon nanotube (CNT) composite material and method of fabricating the same. A CNT array is provided on a substrate. A capping layer is deposited on the CNT array such that the CNT array is between the capping layer and the substrate. A polymer material is infused into the CNT array. Then the substrate and the capping layer are removed. The array of carbon nanotubes included in the polymer-infused CNT composite material are substantially aligned in the same direction.