Device for cleaning and polishing connections of underwater equipment comprising a cleaning-fluid dispersing mechanism

    公开(公告)号:US12090524B2

    公开(公告)日:2024-09-17

    申请号:US17051264

    申请日:2019-04-29

    Abstract: The present invention relates to a device for cleaning and polishing connections of underwater equipment, comprising: a connection element (3) adapted to be connected to a torque-generating device; a cleaning-fluid-discharge device (2) comprising at least one cleaning-fluid reservoir (20); and a cleaning element connected to the discharge device via a support (4) for the cleaning element, wherein the support (4) for the cleaning element comprises at least one channel (41) that in a fluidic manner connects the at least one cleaning-fluid reservoir (20) to the cleaning element. In addition, the device comprises a control system (1) for dispersal of cleaning fluid, comprising a telescopic shaft (1) that comprises a fixed part (11) and a movable part (12), which are adapted to move longitudinally relative to one another, wherein: the movable part (12) extends at least partially inside the fixed part (11); the fixed part (11) is secured to the fluid-discharge device (2); and the movable part (12) is secured to the cleaning element (42); a compressible damping element (10) is provided between the fixed part and the movable part (12); an upper portion of the movable part (12) extends partially inside the fluid-discharge device (2), via an opening (21) in the fluid-discharge device (2); and the channel (41) that fluidly connects the at least one cleaning-fluid reservoir (20) to the cleaning element (42) extends longitudinally through the movable part (12) and extends partially through the upper portion of the movable part (12).

    METHOD OF ISOLATION OF ARN ACIDS FROM NAPHTHENATE DEPOSITS

    公开(公告)号:US20220177400A1

    公开(公告)日:2022-06-09

    申请号:US17546373

    申请日:2021-12-09

    Abstract: Naphthenate deposition is formed from tetraprotic naphthenic acids having aliphatic chains and high molecular weight, provided with four carboxylic terminations, sometimes called ARN acids. Obtaining these species from their matrix of origin requires the prior use of sample preparation methods aiming at an efficient extraction of naphthenic acids. Obtaining ARN acids from naphthenate deposits is advantageous in the potential for reusing waste and reducing environmental damage. The process also adds value to waste materials from the oil production and exploration process.
    The present invention relates to the field of laboratory-scale sample preparation, which describes a methodology for the specific isolation of tetraprotic naphthenic acids, called ARN acids, from residual naphthenate deposits from petroleum production.
    The method consists of cleaning the naphthenate deposit, converting the naphthenate salts to naphthenic acids and isolating the ARN acids from the other organic acids, using a silica-based sorbent material with aminopropyl functional groups, previously selected for an efficient elution of different functional groups and polarities.
    The results of ESI(−)-FT-ICR MS showed that the methodology is promising because it provided an excellent separation by difference in polarity and as a function of different molecular weight ranges, thus reducing the complexity of the organic acid extract obtained from the naphthenate deposit. Furthermore, it allowed the separation of the different acidic species that were present in the sample. The results of ESI(−)-FT-ICR MS also indicated that one of the fractions concentrated into ARN acids, including discharged species and especially ARN acids in the form of monocharged ions. The ESI(−)-Orbitrap MS data corroborated those obtained by ES(−)-FT-ICR MS, making consistent the statement that the extract obtained from the naphthenate deposit contains a mixture of acids and that the fractionation developed provided the isolation of ARN acids from naphthenate deposits. Furthermore, the integrations of the 1H NMR spectra of acidic fractions as a function of molecular weight highlighted the expressive presence of alkyl compounds and absence of aromatic hydrogens in the fraction of interest.

Patent Agency Ranking