Abstract:
Methods of reversal of the binding between a biotin compound and a biotin-binding compound are disclosed. A method of reversibly releasing a biotinylated moiety from a streptavidin (or avidin) coated support is shown as an example. The strong interaction between streptavidin or avidin-biotin is made much weaker by using a combination of modified streptavidin or avidin and modified biotin like desthiobiotin or a derivative thereof like DSB-X Biotin. A protein, such as an antibody may be biotinylated with the modified biotin. When this protein is isolated by binding the modified biotin to the modified streptavidin or avidin bound to an solid surface, it may be released under very gently and very rapid conditions by addition of free biotin. In contrast to proteins obtained by the prior art release methods the protein obtained using the previously available release methods, the proteins obtained using the methods disclosed herein will maintain their native conformation. Uses of the methods in various procedures including cell detachment procedures and techniques of detection, identification, determination, purification, separation and/or isolation of target proteins or nucleic acid molecules are also described.
Abstract:
A process for covalently binding a tagged protein to a polymer particle comprising: contacting a tagged protein with a chelating agent-polymer particle conjugate wherein said tag comprises at least two histidine residues and at least two lysine residues and said chelating agent is tridentate, tetradentate or pentadentate and comprises at least two carboxyl groups and is coordinated by Co2+ ions, to form particle-chelating agent Co2+ complex: contacting said complex with a carbodiimide; and optionally removing the Co2+ ions.
Abstract:
A conjugate comprising a magnetic polymer particle bound to a carboxymethylated aspartate chelating ligand, optionally chelating a metal ion.
Abstract:
A conjugate comprising a magnetic polymer particle bound to a carboxymethylated aspartate chelating ligand, optionally chelating a metal ion.