Abstract:
A hardware system is provided for performing angle-to-time and time-to-angle conversions in a dynamic angular measurement and control system. The system has the capability of updating scheduled event times of other hardware timers in the system that are being used to generate output events at some specific angular position in the future. One application of the system is in automotive powertrain control systems in which the position of the engine is determined from a pulsed signal generated by a rotating crankshaft that accelerates and decelerates over time. The system performs critical calculations in hardware which consumes less CPU bandwidth than existing systems, resulting in potential cost savings for the overall system.
Abstract:
A MRAM storage device comprises a substrate, on/above of which a plurality of word lines, a plurality of bit lines, a plurality of memory cells, and a plurality of isolation diodes are provided. Each memory cell forms a resistive cross point of one word line and one bit line, respectively. Each memory cell is connected to one isolation diode such that a unidirectional conductive path is formed from a word line to a bit line via the corresponding memory cell, respectively. The substrate, at least a part of the word lines or at least a part of the bit lines, and the isolation diodes are realized as one common monocrystal semiconductor block.
Abstract:
A MRAM storage device comprises a substrate, on/above of which a plurality of word lines, a plurality of bit lines, a plurality of memory cells, and a plurality of isolation diodes are provided. Each memory cell forms a resistive cross point of one word line and one bit line, respectively. Each memory cell is connected to one isolation diode such that a unidirectional conductive path is formed from a word line to a bit line via the corresponding memory cell, respectively. The substrate, at least a part of the word lines or at least a part of the bit lines, and the isolation diodes are realized as one common monocrystal semiconductor block.
Abstract:
The Vehicle Alert System has an RF transmitter system which is activated by a steering wheel switch which in turn signals matching receivers in other nearby vehicles. Upon activation, multiple receivers on other so equipped vehicles will detect the originating direction of the alert. A single board computer (SBC) will then activate a respective speaker on the interior of the receiving vehicle to indicate the direction of the alert. A dash mounted panel with LED indicators may also be provided. The device is also capable of disabling any audio entertainment systems in the receiving vehicle thereby ensuring that the warning signal is heard. A bright front mounted purple light would alert pedestrians to potential danger.