Abstract:
A steerable, self-propelled vehicle (20) includes a rotatable steering column that is connected to control the steering angle of one or more ground-engaging members of the vehicle. The vehicle includes between the steering column and the ground-engaging member a first steering servomechanism having at least a first steering assistance characteristic; a second steering servomechanism having a second steering assistance characteristic also being connected to act on the steering column. A controller is provided for causing the first and second steering assistance characteristics to influence the steering of the vehicle in dependence on one or more one or more control commands generated in the controller.
Abstract:
An agricultural vehicle having a hydraulic system, a cab for the vehicle operator includes a self-levelling cab suspension system having a plurality of suspension units each having a spring, a damper and an accumulator. The accumulator comprises a hydraulic working chamber which is separated by a movable wall from a gas filled chamber serving as a spring. The working chamber is also connected to a working chamber of the damper in a closed hydraulic circuit. In the invention, there is no need for a dedicated oil pump since a hydraulic actuator powered by the vehicle hydraulic system is provided for causing hydraulic fluid to flow in the closed hydraulic circuit between the working chamber of the accumulator and the damper, to vary the height of the cab without fluid from the vehicle hydraulic system entering or leaving the closed hydraulic circuit of the damper and accumulator.
Abstract:
The system comprises: a signaling device able to provide the driver with a sensorial alarm signal indicating a danger situation; detectors able to provide signals and/or data representing the situation outside the motor vehicle and/or the travel conditions of the vehicle itself; and electronic processing and control devices designed to analyze the signals and/or data provided by the detectors and determine the occurrence of predetermined operating situations, such as the presence of any obstacles along the travel path of the motor vehicle, and generate, under predetermined conditions and in accordance with a predefined procedure, warning signals and/or data which can be used for activating the signaling device. The signaling device comprises an electrically operated actuator associated with the accelerator pedal of the motor vehicle and able, when activated, to apply to said pedal a stress with predefined characteristics, which is perceivable by the driver's foot.
Abstract:
A suspension system for motor vehicles comprises adjustable hydraulic shock-absorbers of the type provided with a proportional solenoid valve for adjustment of the degree of damping. An axial passage is made through the stem of each hydraulic actuator for enabling the supply of fluid under pressure from an external hydraulic circuit to the shock-absorber or the discharge of fluid from the shock-absorber to the external hydraulic circuit in such a way that the shock-absorber functions also as actuator designed to exert a continuous active control of the movements of rolling and pitching of the motor vehicle.
Abstract:
The system comprises: a signalling device able to provide the driver with a sensorial alarm signal indicating a danger situation; detectors able to provide signals and/or data representing the situation outside the motor vehicle and/or the travel conditions of the vehicle itself; and electronic processing and control devices designed to analyse the signals and/or data provided by the detectors and determine the occurrence of predetermined operating situations, such as the presence of any obstacles along the travel path of the motor vehicle, and generate, under predetermined conditions and in accordance with a predefined procedure, warning signals and/or data which can be used for activating the signalling device. The signalling device comprises an electrically operated actuator associated with the accelerator pedal of the motor vehicle and able, when activated, to apply to said pedal a stress with predefined characteristics, which is perceivable by the driver's foot.
Abstract:
A steerable, self-propelled vehicle (20) includes a rotatable steering column that is connected to control the steering angle of one or more ground-engaging members of the vehicle. The vehicle includes between the steering column and the ground-engaging member a first steering servomechanism having at least a first steering assistance characteristic; a second steering servomechanism having a second steering assistance characteristic also being connected to act on the steering column. A controller is provided for causing the first and second steering assistance characteristics to influence the steering of the vehicle in dependence on one or more one or more control commands generated in the controller.
Abstract:
An agricultural vehicle having a hydraulic system, a cab for the vehicle operator includes a self-levelling cab suspension system having a plurality of suspension units each having a spring, a damper and an accumulator. The accumulator comprises a hydraulic working chamber which is separated by a movable wall from a gas filled chamber serving as a spring. The working chamber is also connected to a working chamber of the damper in a closed hydraulic circuit. In the invention, there is no need for a dedicated oil pump since a hydraulic actuator powered by the vehicle hydraulic system is provided for causing hydraulic fluid to flow in the closed hydraulic circuit between the working chamber of the accumulator and the damper, to vary the height of the cab without fluid from the vehicle hydraulic system entering or leaving the closed hydraulic circuit of the damper and accumulator.
Abstract:
An agricultural vehicle having a hydraulic system, a cab for the vehicle operator includes a self-levelling cab suspension system having a plurality of suspension units each having a spring, a damper and an accumulator. The accumulator comprises a hydraulic working chamber which is separated by a movable wall from a gas filled chamber serving as a spring. The working chamber is also connected to a working chamber of the damper in a closed hydraulic circuit. In the invention, there is no need for a dedicated oil pump since a hydraulic actuator powered by the vehicle hydraulic system is provided for causing hydraulic fluid to flow in the closed hydraulic circuit between the working chamber of the accumulator and the damper, to vary the height of the cab without fluid from the vehicle hydraulic system entering or leaving the closed hydraulic circuit of the damper and accumulator.
Abstract:
An agricultural vehicle having a hydraulic system, a cab for the vehicle operator includes a self-levelling cab suspension system having a plurality of suspension units each having a spring, a damper and an accumulator. The accumulator comprises a hydraulic working chamber which is separated by a movable wall from a gas filled chamber serving as a spring. The working chamber is also connected to a working chamber of the damper in a closed hydraulic circuit. In the invention, there is no need for a dedicated oil pump since a hydraulic actuator powered by the vehicle hydraulic system is provided for causing hydraulic fluid to flow in the closed hydraulic circuit between the working chamber of the accumulator and the damper, to vary the height of the cab without fluid from the vehicle hydraulic system entering or leaving the closed hydraulic circuit of the damper and accumulator.