Abstract:
Apparatus for measuring the differential group delay τ1 in an optical fiber connection. The apparatus comprises at the inlet to said connection, a generator (10) for generating a binary signal sequence at a data rate D and a first polarization controller (30) suitable for subjecting the binary signal of an incoming sequence to a first scan through polarization states; and at the outlet from the connection, a second polarization controller (60) suitable for subjecting the signal resulting from the outgoing sequence to a second scan through polarization states, independently of said first polarization scan, a differential group delay emulator (70) suitable for introducing a variable additional group delay τ2, and an analyzer device (90) suitable for detecting the equality τ1+τ2=1/D in the resulting signal sequence.
Abstract:
A method and apparatus for switching an optical data stream via an optical network node, capable of switching optical data received at input ports to output ports. The method includes the following steps performed by a processing chain upon detection of a stream at a given wavelength by a given input port: determining a resource of the node based on a predetermined routing policy such that, for a given wavelength common to source and destination nodes of the stream, routing within the network is carried out according to a routing tree covering the network, a root of the tree being the destination node; consulting an occupancy table for the resource, indicating if at least one possible preceding stream is using the resource; determining a delay to be applied by the processing chain to prevent a collision between the stream and the possible preceding stream; and configuring the processing chain to apply the delay.
Abstract:
A method of calculating a series of control parameters to be applied to a polarization controller arranged so as to compensate for the modal dispersion of polarization affecting an optical signal passing through an optical link by calculating a plurality of polarization states of which the respective representations on a Poincaré sphere are separated from one another by a distance greater than a minimum distance dependent on an acceptable threshold of bit error ratios and, for each state of polarization thus calculated, associating at least one control parameter to be applied to the polarization controller with the calculated state of polarization.
Abstract:
The differential group delay is measured in an optical fiber connection for an optical signal undergoing a phase modulation BPSK or DPSK by a digital signal at a given rate. A polarization controller at an emerging end of the connection scans polarization states of the modulated optical signal. An emulator iteratively introduces an additional delay in the modulated optical signal emerging from the connection and combines the delayed modulated optical signal and the non delayed modulated optical signal which are both polarized along two orthogonal axes into a resulting optical signal. A polarization controller and a fixed polarizer select a polarization state in the resulting optical signal along one of bisecting lines of the orthogonal axes into a linearly polarized signal. An eye diagram or a spectrum of the polarized signal is acquired by a digital oscilloscope or an optical spectrum analyzer to determine the differential group delay.
Abstract:
A method and apparatus for switching an optical data stream via an optical network node, capable of switching optical data received at input ports to output ports. The method includes the following steps performed by a processing chain upon detection of a stream at a given wavelength by a given input port: determining a resource of the node based on a predetermined routing policy such that, for a given wavelength common to source and destination nodes of the stream, routing within the network is carried out according to a routing tree covering the network, a root of the tree being the destination node; consulting an occupancy table for the resource, indicating if at least one possible preceding stream is using the resource; determining a delay to be applied by the processing chain to prevent a collision between the stream and the possible preceding stream; and configuring the processing chain to apply the delay.
Abstract:
Apparatus for measuring the differential group delay τ1 in an optical fiber connection. The apparatus comprises at the inlet to said connection, a generator (10) for generating a binary signal sequence at a data rate D and a first polarization controller (30) suitable for subjecting the binary signal of an incoming sequence to a first scan through polarization states; and at the outlet from the connection, a second polarization controller (60) suitable for subjecting the signal resulting from the outgoing sequence to a second scan through polarization states, independently of said first polarization scan, a differential group delay emulator (70) suitable for introducing a variable additional group delay τ2, and an analyzer device (90) suitable for detecting the equality τ1+τ2=1/D in the resulting signal sequence.
Abstract:
A method of calculating a series of control parameters to be applied to a polarization controller arranged so as to compensate for the modal dispersion of polarization affecting an optical signal passing through an optical link by calculating a plurality of polarization states of which the respective representations on a Poincaré sphere are separated from one another by a distance greater than a minimum distance dependent on an acceptable threshold of bit error ratios and, for each state of polarization thus calculated, associating at least one control parameter to be applied to the polarization controller with the calculated state of polarization.
Abstract:
The differential group delay is measured in an optical fiber connection for an optical signal undergoing a phase modulation BPSK or DPSK by a digital signal at a given rate. A polarization controller at an emerging end of the connection scans polarization states of the modulated optical signal. An emulator iteratively introduces an additional delay in the modulated optical signal emerging from the connection and combines the delayed modulated optical signal and the non delayed modulated optical signal which are both polarized along two orthogonal axes into a resulting optical signal. A polarization controller and a fixed polarizer select a polarization state in the resulting optical signal along one of bisecting lines of the orthogonal axes into a linearly polarized signal. An eye diagram or a spectrum of the polarized signal is acquired by a digital oscilloscope or an optical spectrum analyzer to determine the differential group delay.