摘要:
Consistent with the present disclosure, one or more spare Widely Tunable Lasers (WTLs) are integrated on a PIC. In the event that a channel, including, for example, a laser, a modulator and a semiconductor optical amplifier in a transmitter or Tx PIC, or a laser, optical hybrid, and photodiodes, for example, in a receiver PIC (Rx PIC), includes one or more defective devices, a spare channel is selected that includes a widely tunable laser (WTL) which may be tuned to the wavelength associated with any of the channels on the PIC. Accordingly, the spare channel replaces the defective channel or the lowest performing channel and outputs modulated optical signals at the wavelength associated with the defective channel. Thus, even though a defective channel may be present, a die consistent with the present disclosure may still output or receive the desired channels because the spare channel replaces the defective channel. As a result, yields and minimum performance may improve compared to PICs that do not have a spare channel and manufacturing costs may be reduced. Alternatively, connections, such as fiber connections, may be made only to the operation or best performing channels.
摘要:
Consistent with the present disclosure, both arms of an MZ interferometer are “double-folded” and are bent in at least two locations to define first and second acute inner angles. Accordingly, the arms of the MZ interferometer may have substantially the same length, and, further, the MZ interferometer has a more compact geometry. In one example, the arms parallel each other and have a serpentine shape, and, in a further embodiment, the arms parallel one another and have a Z-shape. Accordingly, since the temperature of a PIC upon which the MZ interferometer is provided does not vary significantly over such short distances, the temperatures of both arms is substantially the same.
摘要:
A device may include a number of optical waveguides, each of which being spaced from one another. The optical waveguides may each include at least one curved section and widths of the curved sections of the optical waveguides may be selected to reduce polarization conversion of light traversing the birefringent optical waveguides.
摘要:
The present disclosure provides a system, apparatus and method to for providing highly manufacturable compact optical structures in optical circuits, increasing overall yield and lowering manufacturing costs. According to one aspect, an optical circuit is provided which includes an multimode interference element and first and second waveguides. The first waveguide may be provided adjacent a first side of the optical device and extending along at least the length of the multimode interference element, while the second waveguide may be provided adjacent a second side of the multimode interference element and extending along at least the length of the optical device. Each of the first and second waveguide have first and second ends which may be configured to dissipate propagating light in the first and second waveguides. The first waveguide may be spaced a first distance from the multimode interference element, the first distance being substantially constant along the length of the multimode interference element, and the second waveguide may be spaced a second distance from the multimode interference element, the second distance being substantially constant along the length of the multimode interference element. The first and second distances may be selected such that the first and second waveguides provide sufficient fabrication loading to maintain a width of the optical device along, a length of the optical device, within a deviation or range of values. In certain embodiments, the multimode interference element may be a multimode interference optical coupler.
摘要:
The present disclosure provides a system, apparatus and method to for providing highly manufacturable compact optical structures in optical circuits, increasing overall yield and lowering manufacturing costs. According to one aspect, an optical circuit is provided which includes an multimode interference element and first and second waveguides. The first waveguide may be provided adjacent a first side of the optical device and extending along at least the length of the multimode interference element, while the second waveguide may be provided adjacent a second side of the multimode interference element and extending along at least the length of the optical device. Each of the first and second waveguide have first and second ends which may be configured to dissipate propagating light in the first and second waveguides. The first waveguide may be spaced a first distance from the multimode interference element, the first distance being substantially constant along the length of the multimode interference element, and the second waveguide may be spaced a second distance from the multimode interference element, the second distance being substantially constant along the length of the multimode interference element. The first and second distances may be selected such that the first and second waveguides provide sufficient fabrication loading to maintain a width of the optical device along, a length of the optical device, within a deviation or range of values. In certain embodiments, the multimode interference element may be a multimode interference optical coupler.
摘要:
Consistent with the present disclosure, an arrayed waveguide grating (AWG) is provided that includes first inputs and second inputs. Each of the first inputs receives a corresponding one of a plurality of first optical signals, each of which has a corresponding one of a plurality of wavelengths. Second inputs are also provided, such that each second input is preferably provided between two adjacent first inputs. Each of the second inputs receives a corresponding one of a plurality of second optical signals, and each of the second plurality of optical signals has a corresponding one of those wavelengths. Each of the first plurality of optical signals, however, has a first polarization and each of the second plurality of optical signals has a second polarization different than the first polarization. Since the first optical signals are supplied through AWG inputs that are offset from the inputs that receives second optical signals, the first optical signals are supplied at a first AWG output that is spaced from a second AWG output that supplies the second optical signals. The second optical signals are supplied through the second output even though the second optical signals have the same (or substantially the same) wavelengths as the first optical signals. Accordingly, a single AWG may be provided to multiplex both first and second optical signals, thereby simplifying PIC design.
摘要:
The present invention provides for a semiconductor laser having a narrow linewidth and low power consumption for optical communication applications. According to various embodiments of the invention, a semiconductor laser is provided which includes a grating layer comprising a plurality of segmented gratings, each including a non-grating portion and a grating portion. The segmented gratings are configured to enhance a fundamental mode of the semiconductor laser while sufficiently suppressing modes other than the fundamental mode, providing a narrow linewidth for example. The segmented gratings are also configured to provide an effective length longer than an actual length of the semiconductor laser, leading to smaller device areas and corresponding lower power consumption. A photonic integrated circuit is also provided which includes a plurality of semiconductor lasers, consistent with the present invention, as well as additional optical elements, all provided on a single substrate.
摘要:
The present invention provides a system, apparatus and method to provide for amplification at various points along one or more optical paths of a photonic integrated circuit. According to various embodiments of the invention, the photonic integrated circuit includes a plurality of optical devices having associated characteristics which may have lead to optical signal degradation. One or more optical amplifiers provided along one or more optical paths of the photonic integrated circuit compensate for such signal degradation, resulting in a highly configurable photonic integrated circuit. The various optical devices of the photonic integrated circuit may be provided on a single substrate.
摘要:
Consistent with the present disclosure, the number of passive waveguides in a PIC are reduced by directly connecting active components to one another. Accordingly, optical signals propagating in the PIC may experience less loss, and, thus, improved performance may be achieved. In addition, active components may be bent or curved in order to obtain a more compact layout with greater device density. Reduced manufacturing costs can therefore be realized.
摘要:
Consistent with the present disclosure, various optical components are preferably arranged on the surface of a semiconductor substrate such that light propagates in certain components at a direction that is perpendicular to a direction of propagation in other components in order to improve performance and component density.