Abstract:
Techniques for globally managing systems are provided. One or more measurable effects of at least one hypothetical action to achieve a management goal are determined at a first system manager. The one or more measurable effects are sent from the first system manager to a second system manager. At the second system manager, one or more procedural actions to achieve the management goal are determined in response to the one or more received measurable effects. The one or more procedural actions are executed to achieve the management goal.
Abstract:
A method, information processing system, and computer readable storage medium are provided for dynamically managing accelerator resources. A first set of hardware accelerator resources is initially assigned to a first information processing system, and a second set of hardware accelerator resources is initially assigned to a second information processing system. Jobs running on the first and second information processing systems are monitored. When one of the jobs fails to satisfy a goal, at least one hardware accelerator resource in the second set of hardware accelerator resources from the second information processing system are dynamically reassigned to the first information processing system.
Abstract:
A method, information processing system, and computer readable storage medium are provided for dynamically managing accelerator resources. A first set of hardware accelerator resources is initially assigned to a first information processing system, and a second set of hardware accelerator resources is initially assigned to a second information processing system. Jobs running on the first and second information processing systems are monitored. When one of the jobs fails to satisfy a goal, at least one hardware accelerator resource in the second set of hardware accelerator resources from the second information processing system are dynamically reassigned to the first information processing system.
Abstract:
The present invention provides a method of determining a metric of capacity in computing systems and computer applications. Capacity in this sense refers to the ability of computer systems and computer applications to perform work. Many applications and multi-hop system strategies could benefit from understanding the amount of work a particular system or application is capable of performing. A metric such as this can be very difficult to calculate due to widely varying system hardware, operating system architectures; application behavior/performance, etc. This disclosure describes a method of dynamic capacity estimation which learns the capacity of an application or system with respect to the work asked of the system and the resources used by the application in question.
Abstract:
The present invention provides a system for determining a metric of capacity in computing systems and computer applications. Capacity in this sense refers to the ability of computer systems and computer applications to perform work. Many applications and multi-hop system strategies could benefit from understanding the amount of work a particular system or application is capable of performing. A metric such as this can be very difficult to calculate due to widely varying system hardware, operating system architectures, and application behavior/performance.
Abstract:
The present invention provides a system for determining a metric of capacity in computing systems and computer applications. Capacity in this sense refers to the ability of computer systems and computer applications to perform work. Many applications and multi-hop system strategies could benefit from understanding the amount of work a particular system or application is capable of performing. A metric such as this can be very difficult to calculate due to widely varying system hardware, operating system architectures, and application behavior/performance.
Abstract:
The configuration of the logical processors of a logical partition is managed dynamically. A logical partition is initially configured with one or more logical processors. Thereafter, the configuration can be dynamically adjusted. This dynamic adjustment may be in response to workload of the logical partition.
Abstract:
An apparatus and method for distributing traffic across a group of machines using application instance statistics. In order to perform load balancing in accordance with the present invention, a method of generating weights to bias load balancing distributions is provided. The application instances to which traffic is being distributed, or the application middleware, are instrumented to establish certain metrics about the application while running. The application instance instrumentation will provide application statistics such as number of successful transactions, application response times, application topology, importance of transactions being processed, time the application is blocked waiting for resources, resource consumption data, and the like. These metrics are collected, processed, and then presented as a set of weights to the load balancing apparatus to govern its distribution of traffic. With such application metrics available, traffic can be disbursed based on the current state of the application instances and other application instances in the transaction's path, the application instance's likelihood to complete the request, or even higher level business-oriented goals.
Abstract:
The present invention provides a method of determining a metric of capacity in computing systems and computer applications. Capacity in this sense refers to the ability of computer systems and computer applications to perform work. Many applications and multi-hop system strategies could benefit from understanding the amount of work a particular system or application is capable of performing. A metric such as this can be very difficult to calculate due to widely varying system hardware, operating system architectures; application behavior/performance, etc. This disclosure describes a method of dynamic capacity estimation which learns the capacity of an application or system with respect to the work asked of the system and the resources used by the application in question.