Abstract:
The present invention is a system and method for reprogramming a vehicle engine or transmission control unit to receive and store setpoint data where the vehicle electronic control unit was not configured to receive and store aftermarket setpoint data prior to being reprogrammed. The method comprising the steps of modifying enclosure of the vehicle electronic control unit to allow access to a memory device by a reprogramming device, placing a reprogramming device in electrical connection to the memory device, reprogramming the memory device and modifying the enclosure a second time to render it weather proof.
Abstract:
The present invention is a system and method of making setpoint adjustments to a vehicle control computer in a real time manner in order to enable the one performing the programming to observe the changes in vehicle characteristics in real time. The system and method is an improvement over known methods in that it does not require the programmer to repeatedly stop and start the operation of the vehicle in order to verify that any changes have the desired result.
Abstract:
Methods, apparatus, systems, and computer-readable media are provided for employing a mode expansion module to increase a number of operating modes in which a vehicle can operate. The mode expansion module can operate as a computing device, which can be connected to an existing vehicle for sending and receiving both sensor signals and engine control signals. The mode expansion module can be controlled by a user using an existing vehicle control switch that is connected to the vehicle, and can leverage connections to an existing display panel in the vehicle in order to indicate to the user the operating mode that has been selected. Furthermore, when a particular mode of the mode expansion module is selected, the mode expansion module can modify control commands being transmitted from an existing engine control module, and/or modify sensor signals being provided to the existing engine control module.
Abstract:
The present invention is a system and method of making setpoint adjustments to a vehicle control computer in a real time manner in order to enable the one performing the programming to observe the changes in vehicle characteristics in real time. The system and method is an improvement over known methods in that it does not require the programmer to repeatedly stop and start the operation of the vehicle in order to verify that any changes have the desired result.
Abstract:
The present invention is a system and method for reprogramming a vehicle engine or transmission control unit to receive and store setpoint data where the vehicle electronic control unit was not configured to receive and store aftermarket setpoint data prior to being reprogrammed. The method comprising the steps of modifying enclosure of the vehicle electronic control unit to allow access to a memory device by a reprogramming device, placing a reprogramming device in electrical connection to the memory device, reprogramming the memory device and modifying the enclosure a second time to render it weather proof.
Abstract:
Implementations described herein relate to leveraging corresponding streams of speed readings of a vehicle generated by different speed sensors of different computing devices to automatically determine an updated tire size of tires of the vehicle. For example, while a user of the vehicle is driving, a first stream of speed readings can be generated by a vehicle speed sensor of an in-vehicle computing device of the vehicle and a second stream of speed readings can be generated by a mobile speed sensor of a mobile computing device of the user of the vehicle. Processor(s) can obtain the different streams of speed readings from the different computing devices and process the different streams using various operations to determine the update tire size of the tires of the vehicle. The updated tire size can be subsequently utilized to update operational parameter(s) of the vehicle that influence how the vehicle operates.
Abstract:
Methods, apparatus, systems, and computer-readable media are provided for employing a mode expansion module to increase a number of operating modes in which a vehicle can operate. The mode expansion module can operate as a computing device, which can be connected to an existing vehicle for sending and receiving both sensor signals and engine control signals. The mode expansion module can be controlled by a user using an existing vehicle control switch that is connected to the vehicle, and can leverage connections to an existing display panel in the vehicle in order to indicate to the user the operating mode that has been selected. Furthermore, when a particular mode of the mode expansion module is selected, the mode expansion module can modify control commands being transmitted from an existing engine control module, and/or modify sensor signals being provided to the existing engine control module.