Abstract:
A fast load transient response circuit includes a feedback loop that senses a load transient; a first driver and a second driver responsive to a feedback signal from the feedback loop; and a first pass transistor and a second pass transistor with sources and drains being coupled to each other, and a gate of the first pass transistor being driven by the first driver and a gate of the second pass transistor being driven by the second driver. A width of the channel to length of the channel (W/L) ratio of the first pass transistor is different than that of the second pass transistor such that second pass transistor reacts faster than the first pass transistors to a load transient.
Abstract:
A circuit arrangement and method for improving load regulation in an amplifier (e.g., LDO amplifier) uses a feedback circuit including a parallely connected feedback resistance Rf and a noise reduction feedback capacitance Cf, wherein an external capacitance has equivalent series resistance (ESR). The circuit arrangement includes a resistance Resr in the amplifier output, a junction point of the feedback resistance Rf and the feedback capacitor Cf being connected to a negative input of the LDO amplifier. Additionally, the circuit arrangement might include a resistance Rintentional in between Cf and Rf. The circuit arrangement provides good load regulation and better stability without increase in power/area. The arrangement supports external feedback mode providing design flexibility without compromising amplifier-stability, which provides high output current drive capability or enables driving heavy output capacitance. In a preferred form the invention includes split feedback including AC feedback and DC feedback.
Abstract:
A voltage regulator includes a measurement circuit for obtaining a value representing a magnitude of an output capacitance connected at an output node of the voltage regulator. A correction circuit in the voltage regulator modifies a compensation circuit internal to the voltage regulator based on the value. The modification of the compensation circuit is done to ensure that sufficient stability margins to accommodate the output capacitance are ensured for the main feedback loop in the voltage regulator. In an embodiment, a voltage proportional to the output capacitance is detected at start-up of the voltage regulator, and a corresponding binary signal is generated. The logic value of the binary signal is used to add or remove components and/or circuit portions in the compensation circuit to ensure stability. The voltage regulator is thus designed to support a wide range of output capacitance values.
Abstract:
An apparatus is provided. The apparatus comprises an input circuit, a startup circuit, and a current limiter. The input circuit is coupled to a first source and is adapted to provide a first voltage and a first current to a load having a capacitance. The startup circuit is coupled to the input circuit and to the first source, and the startup circuit includes a current source and a startup capacitor coupled in series with one another. The current limiter has a cascode circuit and a discharge circuit. The cascode circuit has a bias transistor and a power transistor coupled in series with one another to provide a second voltage and a second current to the load, where the bias transistor is coupled to a second source and where the bias transistor generally operates as source follower during startup. The discharge circuit is coupled to a node between the bias transistor and the power transistor of the cascode circuit and coupled to a node between the startup current source.
Abstract:
A fast load transient response circuit includes a feedback loop that senses a load transient; a first driver and a second driver responsive to a feedback signal from the feedback loop; and a first pass transistor and a second pass transistor with sources and drains being coupled to each other, and a gate of the first pass transistor being driven by the first driver and a gate of the second pass transistor being driven by the second driver. A width of the channel to length of the channel (W/L) ratio of the first pass transistor is different than that of the second pass transistor such that second pass transistor reacts faster than the first pass transistors to a load transient.
Abstract:
An apparatus having a zero-pole that is dependant on an equivalent series resistance (ESR) and a load is provided. The apparatus comprises an amplifier stage that receives a first input voltage and a bias voltage, an intermediate stage that is coupled to the output node of the amplifier stage (where the intermediate stage outputs an intermediate voltage to an intermediate node), a first capacitor coupled between at least one of the internal transistors at an internal node and the intermediate node, a power transistor coupled between a second input voltage and the intermediate node, a second capacitor coupled between the internal node and the power transistor, and a feedback stage coupled to the intermediate node and to the amplifier stage. The amplifier stage also has an output node and includes a plurality of internal transistors. The second capacitor provides a third input voltage to the power transistor, and the ratio of the capacitance of the first capacitor to the capacitance of the second capacitor controls the position of the zero-pole. Additionally, the feedback stage is adapted to output an output voltage to a load, and wherein the feedback stage provides a feedback voltage to the amplifier stage.
Abstract:
An analog to digital converter (ADC) containing an operational amplifier having a first pair of input terminals and a second pair of input terminals, wherein the output varies if the input signals on either of the input terminals pairs is changed in either the sampling phase or a hold phase. Such an operational amplifier is conveniently shared by two stages of a ADC, while reducing power consumption as well as errors.
Abstract:
An amplifier sharing technique in an analog to digital converter (ADC) in which a cascaded combination of a pre-amplifier and main amplifier is used to provide the required amplification for a first stage, and only the main amplifier is used to provide the amplification for the second stage. Switches and capacitors are used in conjunction such that the sampling and feedback capacitors of the first stage are connected across the cascaded combination in a first phase, and sampling and feedback capacitors of the second stage are connected across the main amplifier in a second phase. By appropriate choice of parameter values for various components, the second poles due to the pre-amplifier may be located at the higher frequency ranges obtaining the required unity gain bandwidth (UGB) without Miller compensation and/or additional gain.
Abstract:
A startup circuit in an LDO includes an operational amplifier having an inverting terminal and a non-inverting terminal and an output node. The non-inverting terminal receives a reference voltage. The startup circuit further includes a feedback capacitor coupled between an output node and the inverting terminal and a current source coupled between the inverting terminal and ground such that the current source and the feedback capacitor together control rate of change of an output voltage of the operational amplifier. A comparator is used to stop the rate of change of output voltage after the output voltage reaches a desired value.
Abstract:
A linear voltage regulator includes a pair of amplifiers. A first amplifier of the pair is used in conventional fashion to generate a regulated output voltage by controlling an impedance of a pass transistor in the linear voltage regulator, the controlling being based on a difference between a reference voltage and a voltage at a first node in a voltage divider network connected between the output terminal of the voltage regulator and a ground terminal. The second amplifier of the pair compares the regulated output voltage and a voltage at a second node in the voltage divider network, and injects a proportional current into the first node. Generation of a regulated output voltage lesser than the reference voltage is thereby enabled.