摘要:
A transistor stack can include a combination of floating and body tied devices. Improved performance of the RF amplifier can be obtained by using a single body tied device as the input transistor of the stack, or as the output transistor of the stack, while other transistors of the stack are floating transistors. Transient response of the RF amplifier can be improved by using all body tied devices in the stack.
摘要:
Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
摘要:
An amplifier circuit includes an input port, an output port, and a reference potential port, an RF amplifier device having an input terminal electrically coupled to the input port, an output terminal electrically coupled to the output port, and a reference potential terminal electrically coupled to the reference potential port. An impedance matching network is electrically connected to the output terminal, the reference potential port, and the output port. The impedance matching network includes a reactive efficiency optimization circuit that forms a parallel resonant circuit with a characteristic output impedance of the peaking amplifier at a center frequency of the fundamental frequency range. The impedance matching network includes a reactive frequency selective circuit that negates a phase shift of the RF signal in phase at the center frequency and exhibits a linear transfer characteristic in a baseband frequency range.
摘要:
A receiver front end capable of receiving and processing intraband non-contiguous carrier aggregate (CA) signals using multiple low noise amplifiers (LNAs) is disclosed herein. A cascode having a “common source” input stage and a “common gate” output stage can be turned on or off using the gate of the output stage. A first switch is provided that allows a connection to be either established or broken between the source terminal of the input stage of each cascode. Further switches used for switching degeneration inductors, gate/sources caps and gate to ground caps for each legs can be used to further improve the matching performance of the invention.
摘要:
An object is to output output signal amplitude exceeding power supply voltage or output signal amplitude falling below ground voltage without requiring a charge pump circuit or the like to generate positive or negative power supply voltage for an operational amplifier. The present invention provides a signal output circuit comprising an operational amplifier including: an amplification stage configured to amplify differential input voltage; and an output stage configured to amplify an input signal amplified by the amplification stage and output the input signal as an output signal, wherein the output stage is a switched capacitor circuit which includes switches and a capacitor configured to sample differential voltage between input voltage outputted from the amplification stage and voltage other than the input voltage and which transfers the differential voltage sampled by the capacitor by switching of the switches based on the input voltage.
摘要:
A low-noise amplifier device includes an inductive input element, an amplifier circuit, an inductive output element and an inductive degeneration element. The amplifier device is formed in and on a semiconductor substrate. The semiconductor substrate supports metallization levels of a back end of line structure. The metal lines of the inductive input element, inductive output element and inductive degeneration element are formed within one or more of the metallization levels. The inductive input element has a spiral shape and the an amplifier circuit, an inductive output element and an inductive degeneration element are located within the spiral shape.
摘要:
A multi-stage amplifier, comprising a first amplifier stage is presented. The output of the first amplifier stage is coupled to a first terminal of a capacitor having a controllable capacitance. The input of a second amplifier stage is coupled to the output of the first amplifier stage and the first terminal of the capacitor. The output of the second amplifier stage is coupled to a second terminal of the capacitor and an output of the multi-stage amplifier. The input of a current sensing circuit is coupled with the output of the multi-stage amplifier. A control signal generator is coupled between the output of the current sensing circuit and a control terminal of the capacitor. The control signal generator provides a control signal to the capacitor in order to control or vary the capacitance of the capacitor.
摘要:
Embodiments of an RF amplifier include a transistor with a control terminal and first and second current carrying terminals, and a shunt circuit coupled between the first current carrying terminal and a ground reference node. The shunt circuit includes a first shunt inductance, a second shunt inductance, and a shunt capacitor coupled in series. The second shunt inductance and the shunt capacitor form a series resonant circuit in proximity to a center operating frequency of the amplifier, and an RF cold point node is present between the first and second shunt inductances. The RF amplifier also includes a video bandwidth circuit coupled between the RF cold point node and the ground reference node.
摘要:
Examples are provided for a multi-stage track-and-hold circuit (THA). The multi-stage THA may include a first stage, a second stage, and a third stage. The first stage may be coupled to an input signal and configured to sample the input signal. The second stage may be coupled to the first stage and may include a buffer circuit. The third stage may be coupled to the second stage and can include a bootstrapped THA. The first stage may further include a shunted source-follower circuit and a switched source-follower circuit. The shunted source-follower circuit may include a first switch that can be operable to couple an output node of the shunted source-follower circuit to ground potential.
摘要:
A wideband power amplifier module includes a plurality of switch mode amplifiers and a plurality of impedance amplifier modules. Each switch mode amplifier includes an input to receive an input signal, and an RF output to output an RF power signal. The switch mode amplifier includes at least one semiconductor switch formed from gallium nitride (GaN). Each impedance amplifier module includes an output electrically connected to the RF output of a respective switch mode amplifier. The impedance amplifier module is configured to inject at least one impedance control signal to each RF output.