Abstract:
Systems and methods for responding to a search query from a user are presented. In responding to a search query from a user, the user is presented with a search results page. The search results page includes both search results (relevant to the search query) and one or more advertisements. At least one of the advertisements is a specially configured advertisement that includes a corresponding app. Execution of the app is initiated through a user-actionable control in the advertisement. Unlike other advertisements that cause navigation to an advertisers landing page, the corresponding app executes within the context of the browser view/search results page. The corresponding app may be designed so that a transaction may be completed through its execution (the particular transaction depending upon the design of the app.)
Abstract:
Chiral 1-(4-methylphenylmethyl)-5-oxo-{N-[(3-t-butoxycarbonyl-aminomethyl)]-piperidin-1-yl}-pyrrolidine-2-carboxamides as inhibitors of collagen induced platelet activation and adhesion The present invention provides chiral (2S)-1-(4-methyl-phenylmethyl)-5-oxo-(3S)—{N-[(3-t-butoxycarbonyl aminomethyl)]-piperidin-1-yl}-pyrrolidine-2-carboxamide, and (2S)-1-(4-methylphenylmethyl)-5-oxo-(3R)—{N-[(3-t-butoxycarbonyl amino methyl)]-piperidin-1-yl}-pyrrolidine-2-carboxamide of formula 6 and 7 respectively. The present invention also relates to use of these moieties as inhibitors of collagen induced platelet adhesion and aggregation mediated through collagen receptors. The present invention provides a process for preparation of chiral carboxamides of formula 6 and 7 using the process which has advantage to avoid any racemization at the a-carboxylic center, during N-alkylation. The reagent LiHMDS is used at low temperatures to furnish methyl N-(p methylphenylmethyl)lpyroglutamate in good chiral purity.
Abstract:
Apparatus for transmitting signal information between central and remote stations in a central station system such as a central station alarm system. The transmission apparatus can continue to transmit information despite the occurrence of any of several types of fault conditions in the transmission line. Apparatus can be provided for detecting various transmission line fault conditions, indicating the nature of those fault conditions, and modifying the transmission apparatus to compensate for those fault conditions.
Abstract:
Chiral 1-(4-methylphenylmethyl)-5-oxo-{N-[(3-t-butoxycarbonyl-aminomethyl)]-piperidin-1-yl}-pyrrolidine-2-carboxamides as inhibitors of collagen induced platelet activation and adhesion The present invention provides chiral (2S)-1-(4-methyl-phenylmethyl)-5-oxo-(3S)-{N-[(3-t butoxycarbonyl aminomethyl)]-piperidin-1-yl}-pyrrolidine-2-carboxamide, and (2S)-1-(4-methylphenylmethyl)-5-oxo-(3R)-{N-[(3-t-butoxycarbonyl amino methyl)]-piperidin-1-yl}-pyrrolidine-2-carboxamide of formula 6 and 7 respectively. The present invention also relates to use of these moieties as inhibitors of collagen induced platelet adhesion and aggregation mediated through collagen receptors. The present invention provides a process for preparation of chiral carboxamides of formula 6 and 7 using the process which has advantage to avoid any racemization at the a-carboxylic center, during N-alkylation. The reagent LiHMDS is used at low temperatures to furnish methyl N-(p methylphenylmethyl)lpyroglutamate in good chiral purity.
Abstract:
This invention relates to a process for the preparation of polycrystalline silicon ingots by providing a first layer of coating on the inside walls of a mold with a slurry of silicon nitride powder in an organic binder dissolved in a solvent; charging the said coated mold with silicon pieces along with calcium chloride or/and calcium fluoride; heating the mold to a temperature in the range of 1420.degree.-1500.degree. C. so as to melt the silicon, by keeping the mold inside the furnace; bringing down the temperature of the mold to a temperature 5.degree.-10.degree. C. above the melting point of silicon; withdrawing the mold containing the melt downwardly and slowly from the hot zone of the furnace so that the solidification of the melt starts from the bottom of the mold and proceeds towards the top as the withdrawal continues till all the melt solidifies; cooling the mold to the room temperature under inert atmosphere and removing the polycrystalline silicon ingot from the mold.