摘要:
n-type organic semiconductors have a pyromellitic diimide structure and electronic or electro-optic devices include pyromellitic diimide compounds as organic semiconductors. Specific semiconductors include pyromellitic diimide compounds have sidechains comprising fluorine substituted aliphatic or aromatic moieties linked to the pyromellitic diimide structure by an alkylene or heteroalkylene linking group. An electronic or electro-optic device includes a first electrode, a second electrode space apart from the first electrode, and an organic semiconductor layer arranged between the first and second electrodes. The organic semiconductor layer comprises a pyromellitic diimide compound.
摘要:
n-type organic semiconductors have a pyromellitic diimide structure and electronic or electro-optic devices include pyromellitic diimide compounds as organic semiconductors. Specific semiconductors include pyromellitic diimide compounds have sidechains comprising fluorine substituted aliphatic or aromatic moieties linked to the pyromellitic diimide structure by an alkylene or heteroalkylene linking group. An electronic or electro-optic device includes a first electrode, a second electrode space apart from the first electrode, and an organic semiconductor layer arranged between the first and second electrodes. The organic semiconductor layer comprises a pyromellitic diimide compound.
摘要:
The present invention provides substituted phenanthroline compounds with high two photon absorption cross sections, as well as substituted phenanthroline compounds which additionally have quenched fluorescence emission upon two photon absorption.
摘要:
Ladder-type oligo-p-phenylene containing donor-acceptor copolymers are disclosed. The ladder-type oligo-p-phenylene can be used as an electron donor unit in the disclosed copolymers to provide a deeper highest occupied molecular orbital (HOMO) level for obtaining polymeric solar cells having a higher open-circuit voltage. Particular electron-accepting units, e.g., a divalent fused-ring heterocyclic moiety selected from the group consisting of a substituted or unsubstituted benzothiadiazole, a substituted or unsubstituted quinoxaline, a substituted or unsubstituted benzobisthiazole, and a substituted or unsubstituted naphthothiadiazole, can be used to tune the electronic band gaps of the polymers for a better light harvesting ability. The disclosed copolymers exhibit field-effect mobilities as high as 0.011 cm2/(V s). Compared to fluorene-containing copolymers with the same acceptor unit, the disclosed ladder-type oligo-p-phenylene containing copolymers have enhanced and bathochromically shifted absorption bands and much better solubility in organic solvents.