Abstract:
Exemplary alloys may comprise, by weight percentage, 13.25% to 14.75% chromium; 4.5% to 5.5% nickel; 0.11% to 0.17% carbon; 0.01% to 0.31% titanium; and the balance of weight percent comprising iron and incidental elements and impurities. Exemplary methods may include conducting additive manufacturing with an atomized alloy powder to generate a manufactured article, where the atomized alloy powder may comprise, by weight percentage, 13.25% to 14.75% chromium; 4.5% to 5.5% nickel; 0.11% to 0.17% carbon; 0.01% to 0.31% titanium; and the balance of weight percent comprising iron and incidental elements and impurities.
Abstract:
Exemplary alloys may be particularly suited for additive manufacturing applications, and may comprise iron and one or more of: chromium (Cr), nickel (Ni), carbon (C), and copper (Cu). Exemplary alloys may have a majority microstructure that is martensite.
Abstract:
A beryllium-free high-strength copper alloy includes, about 10-30 vol % of L12-(Ni,Cu)3(Al,Sn), and substantially excludes cellular discontinuous precipitation around grain boundaries. The alloy may include at least one component selected from the group consisting of: Ag, Cr, Mn, Nb, Ti, and V, and the balance Cu.
Abstract:
Provided herein are titanium alloys that can achieve a combination of high strength and high toughness or elongation, and a method to produce the alloys. By tolerating iron, oxygen, and other incidental elements and impurities, the alloys enable the use of lower quality scrap as raw materials. The alloys are castable and can form α-phase laths in a basketweave morphology by a commercially feasible heat treatment that does not require hot-working or rapid cooling rates. The alloys comprise, by weight, about 3.0% to about 6.0% aluminum, 0% to about 1.5% tin, about 2.0% to about 4.0% vanadium, about 0.5% to about 4.5% molybdenum, about 1.0% to about 2.5% chromium, about 0.20% to about 0.55% iron, 0% to about 0.35% oxygen, 0% to about 0.007% boron, and 0% to about 0.60% other incidental elements and impurities, the balance of weight percent comprising titanium.
Abstract:
Aluminum alloys having improved strength characteristics at elevated temperatures (300null C.) are manufactured by combining selected transition metals (Ni, Co, Ti, Fe, Y, Sc) and selected rare earth materials (Er, Tm, Tb, Lu) in amounts of about 2 to 12% and 2 to 15% atomic percent respectively in an amorphous, glassy state and subsequently devitrifying the amorphous material to form a crystalline mix of fcc and L12 phase material. Devitrification from the amorphous state may be effected by various means including thermal and thermo mechanical processes.
Abstract:
Exemplary martensitic steel alloys may be particularly suited for additive manufacturing applications. Exemplary atomized alloy powders usable in additive manufacturing may include carbon, nickel, manganese, chromium, and the balance iron and incidental impurities. Exemplary steel alloys can be molybdenum free.
Abstract:
Materials, methods and techniques relate to steel alloys. In some instances, steel alloys can include chromium, molybdenum, vanadium, copper, nickel, manganese, niobium, aluminum, and iron. In some instances, exemplary steel alloys are subjected to solution carburizing, tempering, and/or plasma nitriding. Exemplary steel alloys are typically precipitation strengthened carburizable and nitridable steel alloys.
Abstract:
Alloys, a process for preparing the alloys, and manufactured articles including the alloys are described herein. The alloys include, by weight, about 11.5% to about 14.5% chromium, about 0.01% to about 3.0% nickel, about 0.1% to about 1.0% copper, about 0.1% to about 0.2% carbon, about 0.01% to about 0.1% niobium, 0% to about 5% cobalt, 0% to about 3.0% molybdenum, and 0% to about 0.5% titanium, the balance essentially iron and incidental elements and impurities.
Abstract:
A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals. A case hardened, corrosion resistant variant has a reduced weight percent of Ni, enabling increased use of Cr, and decreased Co.
Abstract:
Alloys, processes for preparing the alloys, and manufactured articles including the alloys are described. The alloys include, by weight, about 10% to about 20% chromium, about 4% to about 7% titanium, about 1% to about 3% vanadium, 0% to about 10% iron, less than about 3% nickel, 0% to about 10% tungsten, less than about 1% molybdenum, and the balance of weight percent including cobalt and incidental elements and impurities.