Abstract:
Certain embodiments of the invention may include systems and methods for providing a translating telemetry stationary antenna. According to an example embodiment of the invention, a method is provided for automatically aligning a stationary antenna with a corresponding rotor antenna. The method provides for mounting a stationary antenna with respect to a rotor antenna associated with a rotor. The method includes mounting a stationary antenna to an inner circumference of a support frame, mounting a plurality of radial air bearings to the support frame for maintaining radial alignment of the stationary antenna with respect to the rotor antenna, and mounting a plurality of axial air bearings to the support frame for maintaining axial alignment of the stationary antenna with respect to the rotor antenna.
Abstract:
An aftercooler thermostat housing for an engine is disclosed. The housing system comprises a housing and a thermostat within the housing. The housing system further includes a bypass system for providing a connection to allow an engine coolant to flow to the aftercooler system if the engine coolant temperature is below a first predetermined temperature. The bypass system allows for the engine coolant to flow through a heat exchanger which is part of the aftercooler system if the temperature of the coolant is above the first predetermined temperature. A low temperature aftercooler (LTA) thermostat housing system achieves the necessary heat rejection for the engine via the heat exchanger and achieves low temperature aftercooling using the heat exchanger.
Abstract:
An automatic timing and scoring system equips vehicles with transmitters and places the receiving antenna on the track used by the vehicles. Each vehicle transmitter has a unique frequency. The receiving antenna is located so that the transmitters pass adjacent thereto. The receiving antenna is coupled to a receiver. The receiver has an amplifier and bandpass filters. The bandpass filters pass all of the transmitter frequencies, while rejecting much of the noise. The signal that is received by the receiving antennas is amplified and then limited to a predetermined amplitude. Then, the received signal is shifted in frequency to an intermediate frequency. The intermediate frequency signal is passed through a narrow bandpass filter that rejects all transmitter frequencies but the transmitter frequency of interest. Then, the intermediate frequency signal goes to a tone decoder, which detects signals having predetermined minimum durations. The detected signal is then sent to a computer that records the presence of the signal and the time of occurrence of the signal. The computer tracks the laps of each vehicle as well as elapsed time of each vehicle.
Abstract:
Certain embodiments of the invention may include systems and methods for providing a translating telemetry stationary antenna. According to an example embodiment of the invention, a method is provided for automatically aligning a stationary antenna with a corresponding rotor antenna. The method provides for mounting a stationary antenna with respect to a rotor antenna associated with a rotor. The method includes mounting a stationary antenna to an inner circumference of a support frame, mounting a plurality of radial air bearings to the support frame for maintaining radial alignment of the stationary antenna with respect to the rotor antenna, and mounting a plurality of axial air bearings to the support frame for maintaining axial alignment of the stationary antenna with respect to the rotor antenna.