Abstract:
In one embodiment, a device for generating broad spectrum ultraviolet radiation is provided. The device includes an adjustable spark gap of metallic solids, the spark gap including: a first electrode coupled to a first heatsink, and a second electrode coupled to a second heatsink, the second electrode spaced apart and opposite from the first electrode. The device includes a variable capacitor configured to discharge a voltage through the spark gap to generate broad spectrum ultraviolet radiation. The device includes a voltage source. The device includes a controller configured to control the variable capacitor. The first electrode is formed from a first metallic solid and the second electrode is formed from a second metallic solid, and the ultraviolet radiation generated is in the 140 nm to 400 nm range.
Abstract:
In one embodiment, a device for generating broad spectrum ultraviolet radiation is provided. The device includes an adjustable spark gap of metallic solids, the spark gap including: a first electrode coupled to a first heatsink, and a second electrode coupled to a second heatsink, the second electrode spaced apart and opposite from the first electrode. The device includes a variable capacitor configured to discharge a voltage through the spark gap to generate broad spectrum ultraviolet radiation. The device includes a voltage source. The device includes a controller configured to control the variable capacitor. The first electrode is formed from a first metallic solid and the second electrode is formed from a second metallic solid, and the ultraviolet radiation generated is in the 140 nm to 400 nm range.
Abstract:
In some embodiments, a system for purifying an environment may be provided. The system may include a first electrode which may be exposed to air. The system may include a first transducer which may be configured to apply a first energy to the first electrode and a second transducer which may be configured to apply a second energy to the first electrode. The system may be configured such that at a first time, the first transducer applies the first energy to the first electrode and the second transducer does not apply the second energy to the first electrode. The system may be further configured such that at a second time, the second transducer applies the second energy to the first electrode.
Abstract:
The present invention relates generally to an advanced oxidation process for providing advanced oxidation products to an environment. More particularly, the present invention provides a wick structure and hydrophilic granules for use in an advanced oxidation process, and methods of making the same. The wick structure and hydrophilic granules may be configured to collect and concentrate water vapor, so that the water vapor may subsequently be used to generate advanced oxidation products that react with and neutralize compounds in an environment, including microbes, odor causing chemicals, and other organic and inorganic chemicals.
Abstract:
The present invention relates generally to an advanced oxidation process for providing advanced oxidation products to an environment. More particularly, the present invention provides a device, system, and method utilizing an advanced oxidation process to react with and neutralize compounds in an environment, including microbes, odor causing chemicals, and other organic and inorganic chemicals. The device, system, and method of the present invention employ a wick structure to collect and concentrate water vapor, so that the water vapor may subsequently be used to generate advanced oxidation products.
Abstract:
A device and method for purifying a vehicle cabin is provided. The device comprises a housing, a plurality of light emitting diode (LED) modules each containing an LED, wherein the LED modules are positioned at least partially within the housing, a catalytic target structure, wherein the structure is located below at least one of the LED modules in the plurality of LED modules, a plurality of reflectors, wherein the reflectors are located below at least one of the LED modules in the plurality of LED modules, a plurality of fans, wherein the fans are located at least partially within the housing, a plurality of photocatalyst filters positioned at least partially within the housing, wherein at least one of the plurality of photocatalyst filters is in parallel with at least one of the LED modules in the plurality of LED modules, and a control unit located at least partially within the housing, wherein the control unit is operatively connected to the plurality of LED modules.
Abstract:
The present invention relates generally to an advanced oxidation process for providing advanced oxidation products to an environment. More particularly, the present invention provides a wick structure and hydrophilic granules for use in an advanced oxidation process, and methods of making the same. The wick structure and hydrophilic granules may be configured to collect and concentrate water vapor, so that the water vapor may subsequently be used to generate advanced oxidation products that react with and neutralize compounds in an environment, including microbes, odor causing chemicals, and other organic and inorganic chemicals.