Abstract:
A composite product is for an electrode of a fuel cell including a catalyst, an electrically conductive phase which supports such catalyst, a protonically conductive phase, and a porous phase. At least the contact between the catalyst and the electrically and protonically conductive phases, and preferably also the contact of the porous phase with the catalyst and with the electrically and protonically conductive phases, is improved or maximized. Each of the phases is individually continuous, and such phases are continuous with each other.
Abstract:
An electrocatalytic polymer-based powder has particles of at least one electronically conductive polymer species in which particles are dispersed of at least one catalytic redox species, in which the particles of the polymer species and of the catalytic species are of nanometric dimension.
Abstract:
A method is for forming a vertical interconnection through a dielectric layer between upper and lower electrically conductive layers of an integrated circuit. The method includes forming an opening through the dielectric layer and placing a solidifiable electrically conductive filler into the opening via a printing technique. The solidifiable electrically conductive filler is solidified to thereby form a solidified electrically conducting filler in the opening. A metallization layer is formed over the dielectric layer and the solidified electrically conducting filler to thereby form the vertical interconnection through the dielectric layer between the upper and lower electrically conductive layers of the integrated circuit.
Abstract:
The present invention relates to a process for the preparation of a composite polymeric material containing nanometric inorganic inclusions comprising the steps of: mixing a polymer with a thermolytic precursor to provide a homogeneous dispersion of said at least one precursor and of said at least one polymer; subjecting said homogeneous dispersion to heating to provide a molten polymer and thermolytic fission of the precursor, generating the inclusions dispersed in the molten polymer.
Abstract:
The present invention relates to a process for the preparation of a composite polymeric material containing nanometric inorganic inclusions comprising the steps of: mixing a polymer with a thermolytic precursor to provide a homogeneous dispersion of said at least one precursor and of said at least one polymer; subjecting said homogeneous dispersion to heating to provide a molten polymer and thermolytic fission of the precursor, generating the inclusions dispersed in the molten polymer.
Abstract:
A method is for forming a vertical interconnection through a dielectric layer between upper and lower electrically conductive layers of an integrated circuit. The method includes forming an opening through the dielectric layer and placing a solidifiable electrically conductive filler into the opening via a printing technique. The solidifiable electrically conductive filler is solidified to thereby form a solidified electrically conducting filler in the opening. A metallization layer is formed over the dielectric layer and the solidified electrically conducting filler to thereby form the vertical interconnection through the dielectric layer between the upper and lower electrically conductive layers of the integrated circuit.
Abstract:
A process for manufacturing a non-volatile memory structure, in particular of a cross-point type provided with an array of memory cells, including forming bottom electrodes on a substrate; forming areas of active material on the bottom electrodes; and forming top electrodes on the areas of active material. The memory cells are defined at the intersection of the bottom electrode with the top electrode. At least one from among the steps of forming bottom electrodes, forming areas of active material, and forming top electrodes includes using soft-lithography techniques, chosen from amongst “microtransfer molding”, “micromolding in capillary”, and “microcontact printing”. According to a first type of structure, the step of forming areas of active material includes forming strips of active material in a way self-aligned with respect to the bottom electrodes or the top electrodes; according to a different type of structure, the step of forming areas of active material envisages forming monolayer or multilayer pads between the bottom electrodes and the top electrodes.
Abstract:
An electrocatalytic polymer-based powder has particles of at least one electronically conductive polymer species in which particles are dispersed of at least one catalytic redox species, in which the particles of the polymer species and of the catalytic species are of nanometric dimension.
Abstract:
A mold is for obtaining, on a substrate, an array of carbon nanotubes with a high control of their positioning. The mold includes a first layer of a first preset material having a surface having in relief at least one first plurality of projections having a free end portion with a substantially pointed profile.
Abstract:
A mold is for obtaining, on a substrate, an array of carbon nanotubes with a high control of their positioning. The mold includes a first layer of a first preset material having a surface having in relief at least one first plurality of projections having a free end portion with a substantially pointed profile.