摘要:
A power supply system, for example, for use with a portable personal computer, includes a smart battery pack and a charging system. The smart battery pack is provided with a dedicated microcontroller for controlling the charging level of the battery charger system. In particular, the status of the battery including the voltage and temperature of the battery is applied to the microcontroller along with a signal representative of the current load demand of the computer system. The micro controller, in turn, provides a control signal in the form of fixed frequency, variable duty cycle pulse width modulated (PWM) signal for controlling the charging level of the battery charger system. The duty cycle of the PWM signal is used to regulate the charging current supplied by the battery charger. In particular, the DC value of the PWM signal is used as a reference to control the charging current of the regulator to provide a variable output charging current with a relatively wide current range. As such, the battery charger is adapted to efficiently utilize the residual capacity of the battery charger system for optimizing charging of the battery packs during all operating conditions of the computer system. Moreover, the use of a PWM signal from the battery pack to control the battery charger enables a single type of battery charger to be utilized for various battery technologies.
摘要:
A power supply system, for example, for use with a portable personal computer, includes a smart battery pack and a charging system. The smart battery pack is provided with a dedicated microcontroller for controlling the charging level of the battery charger system. In particular, the status of the battery including the voltage and temperature of the battery is applied to the microcontroller along with a signal representative of the current load demand of the computer system. The microcontroller, in turn, provides a control signal in the form of fixed frequency, variable duty cycle pulse width modulated (PWM) signal for controlling the charging level of the battery charger system. The duty cycle of the PWM signal is used to regulate the charging current supplied by the battery charger. In particular, the DC value of the PWM signal is used as a reference to control the charging current of the regulator to provide a variable output charging current with a relatively wide current range. As such, the battery charger is adapted to efficiently utilize the residual capacity of the battery charger system for optimizing charging of the battery packs during all operating conditions of the computer system. Moreover, the use of a PWM signal from the battery pack to control the battery charger enables a single type of battery charger to be utilized for various battery technologies.
摘要:
A method for use in connection with resetting a CPU including requesting a first reset code stored in an inaccessible memory and redirecting the request to a second reset code stored in accessible memory.A computer system including a CPU, a first memory that may become inaccessible, and a CPU reset facilitator configured to respond to a reset request from the CPU to the first memory at a time when it is inaccessible by diverting the CPU to a second memory.
摘要:
A power supply system, for example, for use with a portable personal computer, includes a smart battery pack and a charging system. The smart battery pack is provided with a dedicated microcontroller for controlling the charging level of the battery charger system. In particular, the status of the battery including the voltage and temperature of the battery is applied to the microcontroller along with a signal representative of the current load demand of the computer system. The micro controller, in turn, provides a control signal in the form of fixed frequency, variable duty cycle pulse width modulated (PWM) signal for controlling the charging level of the battery charger system. The duty cycle of the PWM signal is used to regulate the charging current supplied by the battery charger. In particular, the DC value of the PWM signal is used as a reference to control the charging current of the regulator to provide a variable output charging current with a relatively wide current range. As such, the battery charger is adapted to efficiently utilize the residual capacity of the battery charger system for optimizing charging of the battery packs during all operating conditions of the computer system. Moreover, the use of a PWM signal from the battery pack to control the battery charger enables a single type of battery charger to be utilized for various battery technologies.
摘要:
A system comprises non-volatile storage, a read only memory (ROM) that contains an executable BIOS and a CPU communicatively coupled to the non-volatile storage and the ROM. The non-volatile storage contains user data, an executable capture application, a first operating system contained within a non-volatile storage partition, and a partition file that contains a second operating system. The partition file is also included with the non-volatile storage partition. The capture application executes under the first operating system and causes the CPU to store at least some user data in said partition file. The system may also include a user input control and, upon activation of the user input control, the CPU loads the second operating system from the partition file and provides the user access to the user data via a viewer application that runs under the second operating system.
摘要:
A power supply system, for example, for use with a portable personal computer, includes a smart battery pack and a charging system. The smart battery pack is provided with a dedicated microcontroller for controlling the charging level of the battery charger system. In particular, the status of the battery including the voltage and temperature of the battery is applied to the microcontroller along with a signal representative of the current load demand of the computer system. The micro controller, in turn, provides a control signal in the form of fixed frequency, variable duty cycle pulse width modulated (PWM) signal for controlling the charging level of the battery charger system. The duty cycle of the PWM signal is used to regulate the charging current supplied by the battery charger. In particular, the DC value of the PWM signal is used as a reference to control the charging current of the regulator to provide a variable output charging current with a relatively wide current range. As such, the battery charger is adapted to efficiently utilize the residual capacity of the battery charger system for optimizing charging of the battery packs during all operating conditions of the computer system. Moreover, the use of a PWM signal from the battery pack to control the battery charger enables a single type of battery charger to be utilized for various battery technologies.
摘要:
A power supply system, for example, for use with a portable personal computer, includes a smart battery pack and a charging system. The smart battery pack is provided with a dedicated microcontroller for controlling the charging level of the battery charger system. In particular, the status of the battery including the voltage and temperature of the battery is applied to the microcontroller along with a signal representative of the current load demand of the computer system. The micro controller, in turn, provides a control signal in the form of fixed frequency, variable duty cycle pulse width modulated (PWM) signal for controlling the charging level of the battery charger system. The duty cycle of the PWM signal is used to regulate the charging current supplied by the battery charger. In particular, the DC value of the PWM signal is used as a reference to control the charging current of the regulator to provide a variable output charging current with a relatively wide current range. As such, the battery charger is adapted to efficiently utilize the residual capacity of the battery charger system for optimizing charging of the battery packs during all operating conditions of the computer system. Moreover, the use of a PWM signal from the battery pack to control the battery charger enables a single type of battery charger to be utilized for various battery technologies.