Abstract:
An asymmetric battery testing apparatus tests a battery unit. The battery testing apparatus includes a first wire, a second wire, a third wire, and a testing circuit. The testing circuit includes a test-enabling unit and a control unit. Each wire has a resistance. The test-enabling unit includes a resistor to obtain a first resistor voltage value and a second resistor voltage value. The control unit obtains a battery internal resistance or a battery internal conductance which is a reciprocal of the battery internal resistance of the battery unit according to a battery internal voltage value, a wire voltage value, a first testing voltage value, a second testing voltage value, a testing resistance, the first resistor voltage value, the second resistor voltage value, and the resistances. Accordingly, shorter test time, lower contact failure, higher accuracy, lower power consumption, lower costs, and smaller size are implemented.
Abstract:
There are provided a secondary battery cell, a battery pack, and an electric power consumption device having a configuration and structure capable of accurately and easily detecting the state of the secondary battery cell in the battery pack.A secondary battery cell 20 of the present invention includes an integrated circuit (an IC chip) 60 having a measuring function to measure a battery status, the battery pack has a plurality of secondary battery cells of the present invention, and the electric power consumption device includes the battery pack of the present invention having the plurality of secondary battery cells of the present invention.
Abstract:
An electric storage device management system includes a voltage sensor configured to detect a voltage across an electric storage device having a correlation between an open circuit voltage (OCV) and a state of charge (SOC), the correlation including a slight change region and a sharp change region, the slight change region being a region in which a variation in OCV relative to the SOC is equal to or smaller than a reference value, and the sharp change region being a region in which the variation is larger than the reference value.
Abstract:
Disclosed is a battery management system for transmitting a secondary protection signal and a diagnosis signal using a small number of insulation elements. N battery management units included in the battery management system transmit at least two pieces of data via one communication line through time division. N data signals transmitted from the N battery management units are transmitted in a sequential order or are mixed to one signal and transmitted to an external device.
Abstract:
A diagnostic system for a vehicle includes a traction battery including a plurality of cells, and a controller configured to indicate an overcurrent condition in response to battery current being greater than a value of an upper limit of a current sensor and a difference between a measured battery voltage and an estimated battery voltage, that is based on the value, being greater than a threshold.
Abstract:
Disclosed is a battery management system for transmitting a secondary protection signal and a diagnosis signal using a small number of insulation elements. N battery management units included in the battery management system transmit at least two pieces of data via one communication line through time division. N data signals transmitted from the N battery management units are transmitted in a sequential order or are mixed to one signal and transmitted to an external device.
Abstract:
A controlling and computing portion for controlling charge or discharge of a secondary battery comprises an operation mode setting portion for selectively setting a high capacity mode using a first voltage or a long life mode using a second voltage lower than the first voltage, a remaining capacity calculating portion for calculating a relative state of charge from a remaining capacity of the secondary battery and a full charge capacity, a cycle number calculating portion for calculating a cycle number from a calculation result of the remaining capacity calculating portion, and a charge end voltage setting portion for decreasing the first voltage based on the cycle number, and setting the second voltage at a voltage left by subtracting a predetermined voltage from the first voltage in a case where the first voltage becomes equal to or less than a voltage obtained by adding a predetermined value to the second voltage.
Abstract:
Method for evaluating the state of charge of a battery including at least one phase of estimating the state of charge of the battery by an estimation algorithm and at least one phase of resetting of the estimation algorithm implemented during the estimation phase, which includes (i) detecting a real value of a state of charge of the battery at an instant, by (a) charging or discharging the battery, between first and second levels of state of charge; (b) measuring the voltage across the terminals of the battery during this charging or discharging; (c) evaluating the time derivative of the voltage; (d) detecting at least one particular point of this derivative corresponding to a known and predefined real value of state of charge, and (ii) resetting the estimation algorithm knowing the real value of state of charge at the given instant.
Abstract:
According to an embodiment, a system includes a switching regulator and an electrochemical storage test circuit. The switching regulator is coupled to a power supply input and configured to supply a regulated voltage to a regulated supply terminal that is configured to be coupled to a device. The electrochemical storage test circuit is configured to be coupled to an electrochemical storage unit. The electrochemical storage test circuit includes a bidirectional switch with a first switch terminal coupled to the regulated supply terminal, a second switch terminal configured to be coupled to the electrochemical storage unit, and a switch control terminal. The electrochemical storage test circuit also includes a built-in self-test (BIST) circuit configured to be coupled to the electrochemical storage unit and to the switch control terminal.
Abstract:
There is disclosed an electrical device including a battery pack, a pressure sensor for measuring a volume change of the battery pack, a voltage sensor in electrical communication with a positive terminal and a negative terminal of the battery pack, a temperature sensor positioned in a cell of the battery pack, and a battery management system. The battery management system includes a controller in electrical communication with the pressure sensor, the voltage sensor, and the temperature sensor, the controller being configured to execute a program stored in the controller to determine a state of charge percentage of the battery pack based on a pressure reading from the pressure sensor, a terminal voltage reading from the voltage sensor, and a temperature reading from the temperature sensor.