摘要:
A write current circuit (300, 400) adapted to drive a thin film write head (202) of a mass media information storage device. The write current circuit (300, 400) further includes programming circuitry (311, 411) driven such that parameters of the write current waveform can be varied, including the write current overshoot amplitude and/or overshoot duration. The present invention achieves technical advantages by providing the ability to program out or adjust for system introduced asymmetries in the write current waveform.
摘要:
A circuit (40) for use in a mass data storage device (10) has first (44) second (46) current driver circuits for providing write currents to the data transducer (18). The first and second current levels are different, the second current level being lower than the first. The first current driver circuit (44) may be used to apply currents representing user data to the data transducer (18) and the second current driver circuit (46) may be used to apply currents representing servo information to the data transducer (18). In addition, the first (44) and second (46) current drivers circuits may be operated at different frequencies. The first (44) and second (46) current driver circuits additionally may share at least some circuit components (70, 72, 74-75, 64-65), and may operate at different write speeds.
摘要:
A low noise AC coupled amplifier having transistors sharing bias currents, and having a low band-pass corner frequency and consuming low power. The amplifier may be used in a magneto-resistive (MR) preamplifier to amplify a response from a MR sensor. Bipolar and MOS transistors are used in the front end, utilizing the advantages of each transistor type to achieve low noise as well as low band-pass corner. The amplifier has a modified structure achieving lower power by using a PNP transistor instead of an NPN transistor.
摘要:
The present invention discloses an impedance matched low noise amplifier circuit (10) comprising a serially coupled first resistor (R1) and first transistor (R0), a serially coupled second resistor (R2) and second transistor (R1), a resistive sensor (RMR) coupled to the first transistor (R0) and the second transistor (R1), wherein the first resistor (R1) and the second resistor (R2) are coupled, and a transconductance feedback block (GM) coupled to the resistive sensor (RMR) and to the serially coupled resistors (R1, R2) and transistors (R0, R1).
摘要:
A voltage-mode boosting write driver circuit (40) having a pair of voltage boosting PMOS transistor sets (44, 46) coupled to a high current H-switch (42). One set (44) of the boosting PMOS transistors correspondingly pulls output pin HY high, while the other transistor set (46) correspondingly pulls output pin HX high and the other output pin HY low thereby significantly improving the head voltage swing, and also achieving a faster slew rate. Moreover, resistors (R3, R4) of the H-switch are both matched to each other and impedance matched to a flex cable (T0) interconnection impedance, which interconnection is coupled to the thin film head, to thereby eliminate signal reflection such that the write current (Iw) settles quickly with minimum ringing to achieve a high data rate. Moreover, less power dissipation and smaller number of devices used are achieved by making use of existing transient currents of the pre-driver emitter follower stage.
摘要:
A write current circuit (40) adapted to drive a thin film write head (L0) of a mass media information storage device. The write current circuit includes a write current reference voltage circuit (42) adapted to selectively establish amplitude of a write current signal. The write current circuit further includes programming circuitry (M5-M10) driven such that several parameters of the write current waveform can be controlled, including the write current amplitude, overshoot amplitude and overshoot duration. The present invention achieves technical advantages by providing the ability to both produce an accurate write current, and also providing the ability to establish the write current waveform shape so that customers can optimize disk drive performance even when using different thin film write heads available from different suppliers.
摘要:
The present invention describes a voltage-mode boosting write driver circuit (160), comprising a plurality of inputs (WDP, WDN), a plurality of outputs (HWX, HWY), a transducer (L2), a flex interconnection (T1) coupled to the outputs (HWX, HWY) and to the transducer (L2), a first resistor (R15) and a second resistor (R43) coupled to the outputs (HWX, HWY) and to the transducer (L2), an H-switch (Q15, Q60, Q11, Q22) coupled to the resistors (R15, R43), and a plurality of top boosting circuits (Q42, Q47, R36, and Q43, Q48, R37) coupled to the outputs (HWX, HWY).
摘要:
An apparatus for use with a sensor includes first and second signal treating circuit segments coupled with the sensor for presenting a substantially balanced differential signaling representation of output signals from the sensor. Each respective signal treating circuit segment comprises a plurality of circuit elements having different electrical symmetries coupled in parallel and establishing a plurality of parallel signal paths having asymmetric signal handling characteristics. A feedback circuit is coupled with the first and second signal treating circuit segments and provides feedback signals to selected circuit elements in each of the first and second signal treating circuit segments. The feedback signals effect substantially balanced signal handling among the selected circuit elements having similar electrical symmetries.
摘要:
A preamplifier device (26) for a thin film transducer disk drive system having operation speeds up to and greater than 2 Gb/s. The device (26) includes a low power/high speed driver (203) having a cascaded Class AB buffer. In at least one embodiment the device (26) includes separated drive devices in the driver (203) and H-bridge circuit (205) realized in multiple smaller devices biased separately to reduce transistor self-heating effects and a further embodiment includes a reference (201) having a base cancellation scheme and a Class AB current source for improving accuracy and stability is such high speed devices.