摘要:
A growth factor delivery scaffold combines a heparin/fibrin-based delivery system (HBDS) with a backbone based on polymer nanofibers for tissue (e.g., tendon and ligament) repair. The scaffold has improved surgical handling properties compared to the gelatinous consistency of the prior art HBDS system and retains the capability for delivering mesenchymal cells and controlling the release of growth factors. One application for the scaffold is mesenchymal stem cell (MSC) therapy for flexor tendon repair. The scaffold can deliver growth factors in a sustained manner, can be implanted for flexor tendon repair, is biocompatible, and is not cytotoxic. The growth factor delivery scaffold may also be used in the surgical repair of an injury to bone, muscle, cartilage, or other tissues.
摘要:
A growth factor delivery scaffold combines a heparin/fibrin-based delivery system (HBDS) with a backbone based on polymer nanofibers for tissue (e.g., tendon and ligament) repair. The scaffold has improved surgical handling properties compared to the gelatinous consistency of the prior art HBDS system and retains the capability for delivering mesenchymal cells and controlling the release of growth factors. One application for the scaffold is mesenchymal stem cell (MSC) therapy for flexor tendon repair. The scaffold can deliver growth factors in a sustained manner, can be implanted for flexor tendon repair, is biocompatible, and is not cytotoxic. The growth factor delivery scaffold may also be used in the surgical repair of an injury to bone, muscle, cartilage, or other tissues.