摘要:
This invention pertains to methods and compositions for the diagnosis and treatment of cardiovascular conditions. More specifically, the invention relates to isolated molecules that can be used to diagnose and/or treat cardiovascular conditions including cardiac hypertrophy, myocardial infarction, stroke, arteriosclerosis, and heart failure.
摘要:
The present invention is directed to a therapeutic composition in which human PDGF is bound directly to peptides that self assemble into a biologically compatible gel. When implanted in a patient's body, the composition provides for the slow, sustained release of PDGF. The composition will be especially useful in treating patients who have undergone a myocardial infarction.
摘要:
The present invention is directed to methodology that allows a variety of compounds to be attached to self-assembling peptides using biotin/streptavidin linkages. The peptides can be used to form a biologically compatible membrane that promotes the growth and differentiation of cells. The attached therapeutic agents can be used to promote this process and the gel along with the growing cells can be implanted at a site in vivo where tissue repair is needed. Alternatively, membranes can be used for culturing cells in vitro or can be used for delivering drugs in vivo in the absence of seeded cells.
摘要:
This invention relates to methods and compositions for the treatment and diagnosis of cardiac diseases and disorders, such as cardiac hypertrophy, myocardial infarction, stroke, arteriosclerosis and heart failure. The invention also relates to methods and compositions for the treatment of fibrosis-related diseases as well as methods and compositions for reducing apoptosis, increasing ST2L signaling, decreasing NF-κB activation, decreasing IκBα phosphorylation, decreasing P38MAPK phosphorylation, decreasing JNK phosphorylation, decreasing reactive oxygen species generation, decreasing macrophage infiltration and/or decreasing the expression of hypertrophic genes. More specifically, the invention relates to IL-33 and/or soluble ST2 inhibiting agents for use in the methods and compositions provided.
摘要:
Provided herein are ligand dimers, compositions thereof, as well as methods of their use. The ligand dimers provided can comprise at least one ligand to a Her receptor and can be used to force dimerization of specific receptor pairs. The forced dimerization of specific receptor pairs can be used to control (e.g., promote or inhibit) signaling, and, therefore, the ligand dimers provided can also be used in various forms of treatment in which such signaling control is beneficial to a subject. It follows that methods for controlling signaling are provided as are various methods of treatment.
摘要:
This invention pertains to methods and compositions for the diagnosis and treatment of cardiovascular conditions. More specifically, the invention relates to isolated molecules that can be used to diagnose and/or treat cardiovascular conditions including cardiac hypertrophy, myocardial infarction, stroke, arteriosclerosis, and heart failure.
摘要:
An aortic valve supporting device having an annular portion located around a central axis with stenting arms extending axially from the annular portion. A hiatus is formed in the annular portion to permit the annular portion and the stenting arms to be positioned around the aorta with the stenting arms in position to apply a supporting force to the aortic valve.
摘要:
This invention pertains to methods and compositions for the diagnosis and treatment of cardiovascular conditions. More specifically, the invention relates to isolated molecules that can be used to diagnose and/or treat cardiovascular conditions including cardiac hypertrophy, myocardial infarction, stroke, arteriosclerosis, and heart failure.
摘要:
The present invention is directed stromal cell derived factor-1 peptides that have been mutated to make them resistant to digestion by the proteases dipeptidyl peptidase IV (DPPIV) and matrix metalloproteinase-2 (MMP-2) but which maintain the ability of native SDF-1 to attract T cells. The mutants may be attached to membranes formed by self-assembling peptides and then implanted at sites of tissue damage to help promote repair.