Abstract:
A high performance, high capacitance gain, electric connector for data transfer applications. At least eight sequentially positioned elongate contact members are connected in a series of signal pairs. A first signal pair includes a fourth contact member and a fifth contact member. A second signal pair includes a third contact member and a sixth contact member. In addition, a third signal pair comprises a first contact member and a second contact member. Finally, a seventh and an eighth contact member are in a fourth signal pair. One member of each contact member pair is configured differently from the other member of the pair, the respective contact members being oriented relative to one another such that they substantially remain in generally parallel planes, but define non-parallel paths. Each of the third and fifth contact members mounts a plate-like extension oriented in a first direction and in respective planes generally parallel to one another. Each pair of extensions are separated by a first dielectric such that a first capacitor is formed. Furthermore, each of the fourth and sixth contact members mounts a plate-like extension oriented in a second direction and also in respective planes generally parallel to one another. Each pair of extensions are likewise separated by a second dielectric such that a second capacitor is formed. Each contact of each contact member pair has a plug engaging portion and a board engaging portion, the plurality of contact members having a selected shape, being arranged relative to one another, and being housed collectively by a dielectric casing so as to minimize crosstalk during data transfer.
Abstract:
Modular connector including a housing defining a cable-receiving cavity and having a lower wall, a tab at a front portion extending rearwardly and obliquely outward from the lower wall and an anti-snag member extending from the lower wall to engage with the tab to close a gap between the tab and the lower wall and prevent snagging of wires by the tab. The anti-snag member includes an arcuate portion defining a forward facing end at an interface between the arcuate portion and the lower wall. The connector also includes an arrangement for electrically coupling a cable when received in the cavity to electrical contacts in a mating connector. In the manufacturing process, the anti-snag member is formed as a part of the mold of the housing but in a planar form extending rearwardly from the lower wall and is then bent by heating into the arcuate form.
Abstract:
A wire aligner for assembly with the end portions of four twisted pairs of wires of a multi-conductor cable, is formed as a wire aligner housing having front and rear parts along a central longitudinal axis, the front part defining longitudinally therethrough three channels which are spaced apart horizontally as middle, left and right channels to define a first horizontal plane, and two upper channels spaced apart from each other and defining a second horizontal plane spaced from and above the first horizontal plane. The rear part extends rearwardly from the front part and comprises (a) a pair of left and right separators spaced apart horizontally to define a central space between them and left and right spaces outward of the left and right separators respectively, and (b) a divider extending horizontally between the separators and defining central upper and central lower spaces respectively. These separators are insertable between end portions of the multi-conductor cable such that end portions of two twisted pairs may become situated in each of the left and right spaces respectively, and end portions of two other of the four twisted pairs may become situated in each of the central upper and lower spaces respectively. Each of the channels in the first horizontal plane is adapted to hold the end portions of one of the pairs wires substantially straight and parallel to each other as they extend through their respective channels, and each of the channels in the second horizontal plane is adapted to hold a single wire of the twisted pair extending through the central upper space.
Abstract:
An electrical connector includes an insulative housing, a number of contacts retained in the insulative housing and a metal shell enclosing the insulative housing. The metal shell includes a top wall defining a pair of slits each extending along a transverse direction, a cutout communicating with the slits and a L-shaped cantilevered arm residing in the slits and the cutout. The cantilevered arm includes a base portion protruding along the transverse direction and situated between the pair of slits and a deformable arm extending into the cutout along a mating direction perpendicular to the transverse direction. The deformable arm comprises a locking protrusion bent upwardly for locking with a notch of a mateable connector.
Abstract:
A connector assembly (1000) includes a first connector (100) including a first insulative housing (11), a plurality of first terminals (12) supported by the first insulative housing, each first contact having a body portion and two contacting portions (124) connected with lateral edges of the body portion; a second connector (200) including a second insulative housing (21), a plurality of second terminals (22) supported by the second insulative housing, each second terminal having a body portion and a blade type contacting portion (224); and wherein the contacting portion (224) of each second terminal is sandwiched between the two contacting portions (124) of the corresponding first terminal when the first connector mates with the second connector.
Abstract:
An electrical connector including a connector subassembly having a front mating portion and a waveguide disposed around the front mating portion of the connector subassembly. The waveguide may alternatively be disposed near the front mating portion of the connector subassembly and an illumination device is provided at the side portion of the connector subassembly adjacent to the waveguide for coupling light emanating therefrom onto a portion of the waveguide which in turn conducts the light to illuminate at least a front end of the waveguide. The connector subassembly may further cooperate with a bezel having a frame and an opening. The frame retains the connector subassembly in position with the front mating portion of connector subassembly extending to the opening. The waveguide is then configured to have a front portion disposed between a rim portion of the opening and the front mating portion of the connector subassembly.
Abstract:
A high frequency modular electrical connector assembly including contact/terminal members arranged in such a manner to reduce crosstalk during use. The connector assembly includes a dielectric housing having a receptacle and an insert assembly arranged therein. The insert assembly includes an insert housing and first, second and preferably third sets of contact/terminal members, each contact/terminal member including a contact portion situated in the receptacle, a terminal portion extending beyond the bottom surface of the insert housing and an intermediate portion interconnecting the contact portion and the terminal portion. The contact/terminal member(s) in each set are geometrically different than the contact/terminal members in the other set(s) and are arranged substantially parallel to one another. The insert housing has passageways in each of which a respective contact/terminal member is received. To reduce crosstalk, the contact/terminal members are arranged such that each contact/terminal member is different from any adjacent contact/terminal member(s).
Abstract:
Modular electrical jack including an outer housing part and an inner housing assembly connected to the outer housing part and defining one or more plug-receiving receptacles therewith. The inner housing assembly includes contact/terminal members, at least one of which includes a terminal portion adapted to be connected to a substrate, an arcuate contact portion extending into a respective plug-receiving receptacle and an intermediate bridging portion connecting the terminal portion and the contact portion. The bridging portion is inclined in relation to an inner surface of the outer housing part such that only a very short region of the bridging portion bears against the inner surface of the outer housing part and thus, remaining portions of the bridging portion are spaced from the inner surface. The construction of such contact/terminal members enables the jack to have a height less than that of contact/terminal members in existing jacks of the RJ type while providing the contact/terminal members with sufficient normal contact force to comply with FCC requirements. A communications card such as a PCMCIA card including the jack is also disclosed.
Abstract:
An electrical connector includes an insulative housing, a number of contacts retained in the insulative housing and a metal shell enclosing the insulative housing. The metal shell includes a top wall defining a pair of slits each extending along a transverse direction, a cutout communicating with the slits and a L-shaped cantilevered arm residing in the slits and the cutout. The cantilevered arm includes a base portion protruding along the transverse direction and situated between the pair of slits and a deformable arm extending into the cutout along a mating direction perpendicular to the transverse direction. The deformable arm comprises a locking protrusion bent upwardly for locking with a notch of a mateable connector.
Abstract:
An electrical connector including a connector subassembly having a front mating portion and a waveguide disposed around the front mating portion of the connector subassembly. The waveguide may alternatively be disposed near the front mating portion of the connector subassembly and an illumination device is provided at the side portion of the connector subassembly adjacent to the waveguide for coupling light emanating therefrom onto a portion of the waveguide which in turn conducts the light to illuminate at least a front end of the waveguide. The connector subassembly may further cooperate with a bezel having a frame and an opening. The frame retains the connector subassembly in position with the front mating portion of connector subassembly extending to the opening. The waveguide is then configured to have a front portion disposed between a rim portion of the opening and the front mating portion of the connector subassembly.