Abstract:
A free radical curable liquid for inkjet printing of food packaging materials includes no initiator or otherwise one or more initiators selected from the group consisting of non-polymeric di- or multifunctional initiators, oligomeric initiators, polymeric initiators, and polymerizable initiators; and a polymerizable composition of the liquid consists essentially of: a) 25-100 wt % of one or more polymerizable compounds A having at least one acrylate group G1 and at least one second ethylenically unsaturated polymerizable functional group G2 selected from the group consisting of a vinlyether group, an allylether group, and a allylester group; b) 0-55 wt % of one or more polymerizable compounds B selected from the group consisting of monofunctional acrylates and difunctional acrylates; and c) 0-55 wt % of one or more polymerizable compounds C selected from the group consisting of trifunctional acrylates, tetrafunctional acrylates, pentafunctional acrylates and hexafunctional acrylates. If the weight percentage of compounds B>24 wt %, then the weight percentage of compounds C>1 wt %, and all weight percentages of A, B, and C are based upon the total weight of the polymerizable composition. At least one polymerizable compound B or C is present in the polymerizable composition if the free radical curable liquid contains no initiator.
Abstract:
A free radical curable liquid for inkjet printing of food packaging materials includes no initiator or otherwise one or more initiators selected from the group consisting of non-polymeric di- or multifunctional initiators, oligomeric initiators, polymeric initiators, and polymerizable initiators; wherein the polymerizable composition of the liquid consists essentially of: a) 25-100 wt % of one or more polymerizable compounds A having at least one acrylate group G1 and at least one second ethylenically unsaturated polymerizable functional group G2 different from the group G1; b) 0-55 wt % of one or more polymerizable compounds B selected from the group consisting of monofunctional acrylates and difunctional acrylates; and c) 0-55 wt % of one or more polymerizable compounds C selected from the group consisting of trifunctional acrylates, tetrafunctional acrylates, pentafunctional acrylates and hexafunctional acrylates. If the weight percentage of compounds B>24 wt %, then the weight percentage of compounds C>1 wt %; and wherein all weight percentages of A, B and C are based upon the total weight of the polymerizable composition. At least one polymerizable compound B or C is present in the polymerizable composition if the free radical curable liquid contains no initiator. The polymerizable compound A has a copolymerization ratio of 0.002
Abstract:
An inkjet printing method includes the steps of a) providing a first radiation curable composition curable by free radical polymerization or cationic polymerization; b) applying a layer of the first radiation curable composition on a substrate; c) curing the layer; d) jetting on the cured layer a second composition curable by a different polymerization than the first composition but selected from the group consisting of free radical polymerization and cationic polymerization; and e) curing the jetted second composition by a different polymerization than the first composition. The first composition includes a cationically polymerizable compound having at least one (meth)acrylate group present in the first curable composition in an amount of at least 25 wt % based upon the total weight of the first curable composition. An inkjet ink set may be used in the above inkjet printing method.
Abstract:
A radiation curable composition comprising a curable compound, a photo-initiator and a co-initiator, characterized in that said co-initiator is a oligomer or polymer having a repeating unit, said repeating unit comprising at least two tertiary amines, and said polymer being prepared by the polycondensation of di- or oligofunctional Michael acceptors with mono- or oligofunctional aliphatic primary amines or with di- or oligofunctional aliphatic secondary amines or with a mixture thereof.
Abstract:
An inkjet printing method includes the steps of a) providing a first radiation curable composition curable by free radical polymerization or cationic polymerization; b) applying a layer of the first radiation curable composition on a substrate; c) curing the layer; d) jetting on the cured layer a second composition curable by a different polymerization than the first composition but selected from the group consisting of free radical polymerization and cationic polymerization; and e) curing the jetted second composition by a different polymerization than the first composition. The first composition includes a cationically polymerizable compound having at least one (meth)acrylate group present in the first curable composition in an amount of at least 25 wt % based upon the total weight of the first curable composition. An inkjet ink set may be used in the above inkjet printing method.
Abstract:
A printing process is disclosed for ink-jet printing a radiation curable image on a substrate (14). First a radiation curable liquid layer (12) is provided on at least a portion of the substrate (14). Radiation curable ink-jet ink droplets (10) are jetted into the radiation curable liquid layer (12) and the radiation curable liquid layer (12) containing the radiation curable ink-jet ink droplets (13) is then cured. The resolution of the radiation curable image is controlled by uniformly adjusting the thickness of the liquid layer (12) for the dotsize of the radiation curable ink-jet ink jetted onto the cured layer.
Abstract:
A radiation-curable ink-jet black ink comprising a black pigment, at least one colour pigment and at least one radiation-curable compound is disclosed. An ink-jet set comprising the radiation-curable ink-jet black ink and a process for printing with such an ink-jet ink set are disclosed. Image quality defects of noticeable chromatic variation in adjacent print patches of bi-directional printing are eliminated and reduced ink consumption is observed.
Abstract:
A curable pigment inkjet ink set includes a cyan inkjet ink, a yellow inkjet ink, and a magenta inkjet ink, wherein the yellow inkjet ink having ABS(Y)momo 60 includes one or more yellow pigments; the cyan inkjet ink includes one or more β-copper phthalocyanine pigments; and the magenta inkjet ink contains a mixed crystal including a first quinachdone and a second quinacridone in a ratio of the first quinacridone over the second quinacridone such that ABS(M)500-530>20 and ABS(M)500-600 >60. ABS(Y)500-530 represents the absorbance of the yellow inkjet ink between 500 and 530 nm; ABS(M)500-530 represents the absorbance of the magenta inkjet ink between 500 and 530 nm; ABS(Y)400-500 represents the absorbance ot the yellow inkjet ink between 400 and 500 nm; and ABS(M)500-600 represents the absorbance of the magenta inkjet ink between 500 and 600 nm.
Abstract:
An inkjet printing method includes the steps of a) providing a first radiation curable composition curable by free radical polymerization or cationic polymerization; b) applying a layer of the first radiation curable composition on a substrate; c) curing the layer; d) jetting on the cured layer a second composition curable by a different polymerization than the first composition but selected from the group consisting of free radical polymerization and cationic polymerization; and e) curing the jetted second composition by a different polymerization than the first composition. The first composition includes a cationically polymerizable compound having at least one (meth)acrylate group present in the first curable composition in an amount of at least 25 wt % based upon the total weight of the first curable composition. An inkjet ink set may be used in the above inkjet printing method.
Abstract:
A radiation-curable ink-jet black ink is provided which includes a black pigment, at least one colour pigment and at least one radiation-curable compound. An ink-jet ink set which includes the radiation-curable ink-jet black ink and a process for printing with such an ink-jet ink set are also disclosed. Image quality defects of noticeable chromatic variation in adjacent print patches of bi-directional printing are eliminated and reduced ink consumption is observed.