Abstract:
A polymerizable Norrish Type II photoinitiator according to Formula (I): Radiation curable compositions and inkjet inks containing the polymerizable Norrish Type II photoinitiator of Formula (I) exhibit improved compatibility with and solubility in radiation curable compositions and inkjet inks, and exhibit low extractable amounts of the photoinitiator and its residues after curing.
Abstract:
An inkjet printing method includes the steps of a) providing a first radiation curable composition curable by free radical polymerization or cationic polymerization; b) applying a layer of the first radiation curable composition on a substrate; c) curing the layer; d) jetting on the cured layer a second composition curable by a different polymerization than the first composition but selected from the group consisting of free radical polymerization and cationic polymerization; and e) curing the jetted second composition by a different polymerization than the first composition. The first composition includes a cationically polymerizable compound having at least one (meth)acrylate group present in the first curable composition in an amount of at least 25 wt % based upon the total weight of the first curable composition. An inkjet ink set may be used in the above inkjet printing method.
Abstract:
A radiation curable composition comprising a curable compound, a photo-initiator and a co-initiator characterized in that said co-initiator is represented by Formula I, wherein MA is the residue of a mono- or oligofunctional Michael acceptor; L is a divalent linking group positioning the two tertiary amines in a 1-3 to 1-10 position, with the proviso that both amines are aliphatic; R1, R2 and R3 independently represent an optionally substituted alkyl group, an optionally substituted alkenyl group , an optionally substituted alkynyl group or an optionally substituted (hetero) alkaryl group; any two of R1, R2 and R3 may represent the necessary atoms to form a ring; any two of R1, R2 and R3 may represent the necessary atoms to form a ring with any of the atoms of the linking group L; n is an integer ranging from 1 to 6.
Abstract:
A radiation curable composition comprising a curable compound, a photo-initiator and a co-initiator, wherein said co-initiator has a structure according to Formula I A-L-B Formula I wherein A represents a structural moiety comprising an aromatic tertiary amine; B represents a structural moiety comprising at least one aliphatic tertiary amine; L represents a divalent linking group positioning the nitrogen atom of the aromatic amine of the structural moiety A and the nitrogen of at least one aliphatic amine of the structural moiety B in a 1-3 to 1-23 position; with the proviso that at least one aromatic and at least one aliphatic amine each have at least one alfa-hydrogen.
Abstract:
A radiation curable composition comprising a novel photoreactive polymer is disclosed comprising a dendritic polymer core with at least one initiating functional group and at least one co-initiating functional group.Suitable radiation curable compositions are varnishes, lacquers, printing inks and radiation curable ink-jet inks. The dendritic polymeric core is preferably a hyperbranched polymer.
Abstract:
A radiation curable composition comprising a novel photoreactive polymer is disclosed comprising a dendritic polymer core with at least one initiating functional group and at least one co-initiating functional group. Suitable radiation curable compositions are varnishes, lacquers,printing inks and radiation curable ink-jet inks. The dendritic polymeric core is preferably a hyperbranched polymer.
Abstract:
A free radical curable liquid for inkjet printing of food packaging materials includes no initiator or otherwise one or more initiators selected from the group consisting of non-polymeric di- or multifunctional initiators, oligomeric initiators, polymeric initiators, and polymerizable initiators; and a polymerizable composition of the liquid consists essentially of: a) 25-100 wt % of one or more polymerizable compounds A having at least one acrylate group G1 and at least one second ethylenically unsaturated polymerizable functional group G2 selected from the group consisting of a vinlyether group, an allylether group, and a allylester group; b) 0-55 wt % of one or more polymerizable compounds B selected from the group consisting of monofunctional acrylates and difunctional acrylates; and c) 0-55 wt % of one or more polymerizable compounds C selected from the group consisting of trifunctional acrylates, tetrafunctional acrylates, pentafunctional acrylates and hexafunctional acrylates. If the weight percentage of compounds B>24 wt %, then the weight percentage of compounds C>1 wt %, and all weight percentages of A, B, and C are based upon the total weight of the polymerizable composition. At least one polymerizable compound B or C is present in the polymerizable composition if the free radical curable liquid contains no initiator.
Abstract:
A free radical curable liquid for inkjet printing of food packaging materials includes no initiator or otherwise one or more initiators selected from the group consisting of non-polymeric di- or multifunctional initiators, oligomeric initiators, polymeric initiators, and polymerizable initiators; wherein the polymerizable composition of the liquid consists essentially of: a) 25-100 wt % of one or more polymerizable compounds A having at least one acrylate group G1 and at least one second ethylenically unsaturated polymerizable functional group G2 different from the group G1; b) 0-55 wt % of one or more polymerizable compounds B selected from the group consisting of monofunctional acrylates and difunctional acrylates; and c) 0-55 wt % of one or more polymerizable compounds C selected from the group consisting of trifunctional acrylates, tetrafunctional acrylates, pentafunctional acrylates and hexafunctional acrylates. If the weight percentage of compounds B>24 wt %, then the weight percentage of compounds C>1 wt %; and wherein all weight percentages of A, B and C are based upon the total weight of the polymerizable composition. At least one polymerizable compound B or C is present in the polymerizable composition if the free radical curable liquid contains no initiator. The polymerizable compound A has a copolymerization ratio of 0.002
Abstract:
An inkjet printing method includes the steps of a) providing a first radiation curable composition curable by free radical polymerization or cationic polymerization; b) applying a layer of the first radiation curable composition on a substrate; c) curing the layer; d) jetting on the cured layer a second composition curable by a different polymerization than the first composition but selected from the group consisting of free radical polymerization and cationic polymerization; and e) curing the jetted second composition by a different polymerization than the first composition. The first composition includes a cationically polymerizable compound having at least one (meth)acrylate group present in the first curable composition in an amount of at least 25 wt % based upon the total weight of the first curable composition. An inkjet ink set may be used in the above inkjet printing method.
Abstract:
A radiation curable composition comprising a curable compound, a photo-initiator and a co-initiator, characterized in that said co-initiator is a oligomer or polymer having a repeating unit, said repeating unit comprising at least two tertiary amines, and said polymer being prepared by the polycondensation of di- or oligofunctional Michael acceptors with mono- or oligofunctional aliphatic primary amines or with di- or oligofunctional aliphatic secondary amines or with a mixture thereof.