Abstract:
Methods, apparatuses and systems directed to a network traffic synchronization mechanism facilitating the deployment of network devices in redundant network topologies. In certain embodiments, when a first network device directly receives network traffic, it copies the network traffic and transmits it to at least one partner network device. The partner network device processes the copied network traffic, just as if it had received it directly, but, in one embodiment, discards the traffic before forwarding it on to its destination. In one embodiment, the partner network devices are operative to exchange directly received network traffic. As a result, the present invention provides enhanced reliability and seamless failover. Each unit, for example, is ready at any time to take over for the other unit should a failure occur. As discussed below, the network traffic synchronization mechanism can be applied to a variety of network devices, such as firewalls, gateways, network routers, and bandwidth management devices.
Abstract:
Synchronization of network traffic compression mechanisms deployed in redundant network topologies. In one implementation, the present invention features the synchronization of compression statistics on redundant network devices to facilitate failover and load sharing operations in the management of data flows traversing computer network environments. In one implementation, compression meta data is appended to synchronization packets and transmitted to one or more partner or redundant network devices. The receiving network devices use the compression meta data to synchronize one or more data flow control processes or data structures. Implementations of the present invention also feature process flows that increase the efficiency of synchronizing compression related operations.
Abstract:
Methods, apparatuses and systems allowing for dynamic bandwidth management schemes responsive to the state of a plurality of access links in redundant network topologies. In one embodiment, the present invention provides a bandwidth management device that periodically queries routing systems associated with access links, conceptually grouped into a virtual access link, to monitor that load of the access links and, depending on the detected load, adjust the configuration of the bandwidth management device to avoid overloading one or more of the access links. Embodiments of the present invention increases network efficiency and help network traffic to flow more smoothly with higher throughput. In one embodiment, the dynamic link control functionality is invoked when any given access link reaches a threshold capacity level. Assuming that network traffic will scale in the same ratio as presently observed, the present invention calculates the maximum traffic that can be let through so that no network interface or access link is overloaded.
Abstract:
Methods, apparatuses and systems directed to a network traffic synchronization mechanism facilitating the deployment of network devices in redundant network topologies. In certain embodiments, when a first network device directly receives network traffic, it copies the network traffic and transmits it to at least one partner network device. The partner network device processes the copied network traffic, just as if it had received it directly, but, in one embodiment, discards the traffic before forwarding it on to its destination. In one embodiment, the partner network devices are operative to exchange directly received network traffic. As a result, the present invention provides enhanced reliability and seamless failover. Each unit, for example, is ready at any time to take over for the other unit should a failure occur. As discussed below, the network traffic synchronization mechanism can be applied to a variety of network devices, such as firewalls, gateways, network routers, and bandwidth management devices.
Abstract:
Methods, apparatuses and systems directed to an aggregate bandwidth utilization control scheme including fair share bandwidth allocation and dynamic allocation of bandwidth in response to detected traffic utilization. In one implementation, the present invention includes a weighted, fair share aggregate bandwidth allocation mechanism that dynamically responds to observed bandwidth utilization to provide unutilized or excess bandwidth to flows and partitions that require it. In another implementation, the present invention features a weighted fair share allocation scheme for hierarchical partition configurations. In other implementations, the present invention provides a per-flow target rate assignment mechanism that prevents spiraling decline of data flow rates.
Abstract:
Methods, apparatuses and systems directed to a network traffic synchronization mechanism facilitating the deployment of network devices in redundant network topologies. In certain embodiments, when a first network device directly receives network traffic, it copies the network traffic and transmits it to at least one partner network device. The partner network device processes the copied network traffic, just as if it had received it directly, but, in one embodiment, discards the traffic before forwarding it on to its destination. In one embodiment, the partner network devices are operative to exchange directly received network traffic. As a result, the present invention provides enhanced reliability and seamless failover. Each unit, for example, is ready at any time to take over for the other unit should a failure occur. As discussed below, the network traffic synchronization mechanism can be applied to a variety of network devices, such as firewalls, gateways, network routers, and bandwidth management devices.
Abstract:
Methods, apparatuses and systems directed to a network traffic synchronization mechanism facilitating the deployment of network devices in redundant network topologies. In certain embodiments, when a first network device directly receives network traffic, it copies the network traffic and transmits it to at least one partner network device. The partner network device processes the copied network traffic, just as if it had received it directly, but, in one embodiment, discards the traffic before forwarding it on to its destination. In one embodiment, the partner network devices are operative to exchange directly received network traffic. As a result, the present invention provides enhanced reliability and seamless failover. Each unit, for example, is ready at any time to take over for the other unit should a failure occur. As discussed below, the network traffic synchronization mechanism can be applied to a variety of network devices, such as firewalls, gateways, network routers, and bandwidth management devices.
Abstract:
A method for use in a network device that uses a proportional/integral/derivative (PID)-type algorithm to compute one or more flow control parameters intended to achieve a target rate for a data flow.
Abstract:
Methods, apparatuses and systems directed to an aggregate bandwidth utilization control scheme including fair share bandwidth allocation and dynamic allocation of bandwidth in response to detected traffic utilization. In one implementation, the present invention includes a weighted, fair share aggregate bandwidth allocation mechanism that dynamically responds to observed bandwidth utilization to provide unutilized or excess bandwidth to flows and partitions that require it. In another implementation, the present invention features a weighted fair share allocation scheme for hierarchical partition configurations. In other implementations, the present invention provides a per-flow target rate assignment mechanism that prevents spiraling decline of data flow rates.
Abstract:
Methods, apparatuses and systems allowing for network link state mirroring in intermediate network devices. A variety of intermediate network devices disposed between two network devices are operationally transparent to the two network devices. For example, a bandwidth management device disposed between a gateway router and a LAN hub or switch, is operationally transparent, to both network devices since the bandwidth management device, pacing or otherwise controlling packet flows, does not alter the essential routing or switching functions of the devices. The present invention promotes or enhances this operational transparency by mirroring the link state detected at a first network interface on other network interfaces. This functionality is highly useful in today's network topologies where information regarding failure of a link can be used to re-route traffic, alert a network administrator, and the like.