Abstract:
Blowout preventer (BOP) stack and lower marine riser package for sealing an undersea well. The blowout preventer stack includes a frame extending along an axis and configured to be attached to a head of the well; an accumulator attached to the frame and configured to provide high pressure; two or more BOPs attached to the frame, the two or more BOPs being disposed within the frame and attached one on top of the other along the axis; each BOP having a body and a pair of bonnets attached to the body, where the bonnets are configured to be detachably attached to the body; each BOP having a corresponding cavity extending along the axis through which a fluid from the well is circulating; each BOP being configured to seal the well when the high pressure from the accumulator is released to the BOPs; plural brackets attached to the body of at least one BOP; and a safety bar attached to the plural brackets and configured to partially encircle the body of the at least one BOP.
Abstract:
Blowout preventer (BOP) stack and lower marine riser package for sealing an undersea well. The blowout preventer stack includes a frame extending along an axis and configured to be attached to a head of the well; an accumulator attached to the frame and configured to provide high pressure; two or more BOPs attached to the frame, the two or more BOPs being disposed within the frame and attached one on top of the other along the axis; each BOP having a body and a pair of bonnets attached to the body, where the bonnets are configured to be detachably attached to the body; each BOP having a corresponding cavity extending along the axis through which a fluid from the well is circulating; each BOP being configured to seal the well when the high pressure from the accumulator is released to the BOPs; plural brackets attached to the body of at least one BOP; and a safety bar attached to the plural brackets and configured to partially encircle the body of the at least one BOP.
Abstract:
An air swivel ring includes a non-rotating member having an air inlet, a rotating member having an air outlet, and a split seal having a first sealing surface and coupled to one of the non-rotating member and the rotating member so that the first sealing surface on the seal is disposed proximate a second sealing surface on the other of the non-rotating member and the rotating member.
Abstract:
Method and recharging mechanism for resetting a pressure in a low pressure recipient. The recharging mechanism includes a low pressure recipient configured to have first and second chambers, the first chamber being configured to receive a hydraulic liquid at a high pressure and the second chamber being configured to include a gas at a low pressure. The recharging mechanism further includes a valve fluidly connected to a first port of the first chamber; a pumping device fluidly connected to a second port of the first chamber; and a blowout preventer (BOP) section fluidly connected to the valve and configured to close or open a ram block. The pumping device is configured to evacuate the hydraulic fluid from the first chamber of the low pressure recipient when the valve closes a fluid communication between the first port of the first chamber and the BOP section.
Abstract:
A flow regulator includes a flow regulating part configured to receive at an inlet a working fluid at a first pressure and to release the working fluid at an outlet at a second pressure; a slide provided inside the flow regulating part and configured to move along an axis to reduce the pressure of the working fluid; a control part attached to the flow regulating part, the control part including a chamber; a spring housing provided in the chamber and connected to the slide though a shaft, the spring housing configured to move the slide along the axis; a cap provided in the chamber and facing the spring housing, the cap being configured to have plural blind holes; and plural pins extending along the axis and attached to the spring housing, the plural pins being configured to enter the plural blind holes.
Abstract:
Method and recharging mechanism for resetting a pressure in a low pressure recipient. The recharging mechanism includes a low pressure recipient configured to have first and second chambers, the first chamber being configured to receive a hydraulic liquid at a high pressure and the second chamber being configured to include a gas at a low pressure. The recharging mechanism further includes a valve fluidly connected to a first port of the first chamber; a pumping device fluidly connected to a second port of the first chamber; and a blowout preventer (BOP) section fluidly connected to the valve and configured to close or open a ram block. The pumping device is configured to evacuate the hydraulic fluid from the first chamber of the low pressure recipient when the valve closes a fluid communication between the first port of the first chamber and the BOP section.
Abstract:
A fluid union includes a rotatable member with an axis to rotate about, a non-rotatable member, and an actuating member disposed between the rotatable member and the non-rotatable member. The actuating member is moveable along the axis between an engaged position and a non-engaged position and the actuating member is biased towards the non-rotatable member.
Abstract:
A flow regulator includes a flow regulating part configured to receive at an inlet a working fluid at a first pressure and to release the working fluid at an outlet at a second pressure; a slide provided inside the flow regulating part and configured to move along an axis to reduce the pressure of the working fluid; a control part attached to the flow regulating part, the control part including a chamber; a spring housing provided in the chamber and connected to the slide though a shaft, the spring housing configured to move the slide along the axis; a cap provided in the chamber and facing the spring housing, the cap being configured to have plural blind holes; and plural pins extending along the axis and attached to the spring housing, the plural pins being configured to enter the plural blind holes.
Abstract:
Method and device to be used for resetting a pressure in a low pressure recipient connected to a subsea pressure control device. The device includes the low pressure recipient configured to have first and second chambers separated by a first piston; a reset recipient configured to have third and fourth chambers separated by a piston assembly, and the piston assembly includes a second piston having first and second extension elements that extend along a direction of movement of the piston assembly. The third chamber has an inlet configured to allow the hydraulic liquid to enter the third chamber and an outlet configured to allow the hydraulic liquid to exit the third chamber, and the fourth chamber has an inlet configured to allow the hydraulic liquid to enter the fourth chamber and an outlet configured to allow the hydraulic liquid to exit the fourth chamber.
Abstract:
An air swivel ring includes a non-rotating member having an air inlet, a rotating member having an air outlet, and a split seal having a first sealing surface and coupled to one of the non-rotating member and the rotating member so that the first sealing surface on the seal is disposed proximate a second sealing surface on the other of the non-rotating member and the rotating member.