METHOD FOR RECOVERING LITHIUM FROM MOTHER LIQUOR AFTER LITHIUM CARBONATE PRECIPITATION REACTION

    公开(公告)号:US20240026494A1

    公开(公告)日:2024-01-25

    申请号:US18255166

    申请日:2021-12-09

    IPC分类号: C22B26/12 C22B7/00

    CPC分类号: C22B26/12 C22B7/006

    摘要: A method for recovering lithium from a lithium precipitation mother liquor, the method using the following cycle steps including adsorption, displacement, desorption and transformation: a. mounting a lithium-sodium separation resin in a resin column, and adding the lithium precipitation mother liquor to the resin column for adsorption, wherein the adsorption rate can reach 90% or more; b. after adsorption, washing the resin with water, displacing the resin with a lithium-salt-containing solution to wash out residual sodium from the resin; c. after displacement, desorbing the resin by means of an acid solution to obtain a solution with a high lithium content and a low sodium content, which solution has passed desorption criteria; and d. after desorption, carrying out reverse transformation on the resin by means of a transformation solution in order to ensure that no bubbles appear and then reduce the adsorption effect during the adsorption process. During the cycle, the lithium in the lithium precipitation mother liquor is separated from the solution with a high lithium-to-sodium ratio to obtain the solution with the high lithium-to-sodium ratio.

    NEW LITHIUM-SODIUM SEPARATION METHOD

    公开(公告)号:US20230017362A1

    公开(公告)日:2023-01-19

    申请号:US17792624

    申请日:2020-12-16

    摘要: Disclosed is a new continuous lithium-sodium separation method. A lithium-sodium separation mother solution, a first leacheate, a desorption solution, a second leacheate and a lithium-sodium separation adsorption tail solution respectively pass through a lithium-sodium separation mother solution feeding pipe (2), a first leacheate feeding pipe (3), a desorption solution feeding pipe (4), a second leacheate feeding pipe (5) and an adsorption tail solution top desorption solution feeding pipe (6) that are located above and below a rotary disc of a multi-way change-over valve system (1), respectively enter corresponding resin columns (7) by means of pore channels and channels in the multi-way change-over valve system (1), and then are discharged from an adsorption tail solution discharging pipe (8), a first leacheate discharging pipe (9), a qualified liquid discharging pipe (10), a second leacheate discharging pipe (11) and an adsorption tail solution top desorption solution discharging pipe (12), so as to complete the whole technological process, wherein the resin columns (7) are connected in series or in parallel by means of the channels located in the multi-way change-over valve system (1). The method is simple and easy to operate, the resin utilization rate is improved by 20% or more, the efficiency is improved by 40% or more, and the production cost can be reduced by 30-50%. The production reliability is improved, and all-year continuous operation can be realized.

    LITHIUM EXTRACTION METHOD FOR ALKALINE SOLUTION

    公开(公告)号:US20240218483A1

    公开(公告)日:2024-07-04

    申请号:US18556060

    申请日:2022-08-09

    IPC分类号: C22B26/12 C22B3/24 C22B3/42

    CPC分类号: C22B26/12 C22B3/24 C22B3/42

    摘要: The present application discloses a lithium extraction method for an alkaline solution, in which a lithium adsorption material is used in an alkaline environment. Lithium ions in the alkaline solution are adsorbed, the lithium adsorption material is replaced with an alkaline high-lithium low-impurity solution, and then an acid solution is used for desorption, so that a high-lithium salt solution having higher lithium content can be obtained. Lithium concentration can reach 5 g/L or more, and the high-lithium salt solution can enter a bipolar membrane system for electrolysis, thereby preparing an alkaline high-lithium low-impurity solution and an acid solution for replacement and desorption of the lithium adsorption material. In the method provided by the present application, lithium in an alkaline solution is adsorbed by resin, and the lithium is preliminarily separated from sodium and potassium. Then, the sodium and the potassium are gradually removed from the resin according to the difference of the retention characteristics of the lithium, the sodium and the potassium on the resin, so that the function of lithium purification is achieved, and lithium concentration is ensured.

    POROUS RESIN USED TO SOLID PHASE SYNTHESSIS AND PREPARATION METHOD THEREFOR

    公开(公告)号:US20230312859A1

    公开(公告)日:2023-10-05

    申请号:US18043786

    申请日:2021-02-24

    IPC分类号: C08J9/28 C08F222/34 C08F2/18

    摘要: A porous resin used to solid phase synthesis and a preparation method therefor, specifically being a porous resin having functional groups being an amino group or a hydroxyl group and a preparation method therefor. Using an olefin compound containing two cyano groups as a modified monomer, using a high internal phase emulsion as a pore-foaming agent, and performing suspension polymerization to prepare the porous resin. And then functionalizing the porous resin to obtain the porous resin having functional groups being an amino group or a hydroxyl group. Different from the existing preparation method, the modified monomer can make the distribution of the functional groups more uniform, and make the swelling degrees of the porous resin in different solvents close. The high internal phase emulsion pore-foaming agent can make the pore size distribution of the carrier narrower. The porous resin can be used as a solid phase synthesis carrier to prepare an oligonucleotide, and the use of the carrier is beneficial for improving the yield and purity of the oligonucleotide.

    ADSORBENT RESIN FOR REMOVING PERFLUORINATED POLLUTANTS FROM BODY OF WATER, PREPARATION THEREFOR, AND USE THEREOF

    公开(公告)号:US20230038402A1

    公开(公告)日:2023-02-09

    申请号:US17790668

    申请日:2020-12-16

    摘要: The present invention relates to an adsorbent resin for removing perfluorinated pollutants from a body of water, a preparation therefor and the use thereof. The objective is to solve the problem of traditional adsorbent materials, such as active carbon materials, having a poor effect in terms of removing perfluorooctanoic acid from water, being non-renewable, etc. In the present method, styrene and divinylbenzene are used as framework materials, a suitable pore-forming agent and a suitable dispersant are selected in order to prepare a macroporous resin with a moderate pore size, and an alkylation reaction is carried out at a low hindrance with p-xylylene dichloride (XDC) being used as a post-crosslinking agent, whereby a rigid benzene ring structure is introduced into the resin by means of post-crosslinking, thereby further increasing the hydrophobicity of the resin and increasing the crosslinking degree thereof; in addition, the micropore structure is adjusted in order to obtain an adsorbent resin with a narrow particle size distribution, a uniform pore size and a high specific surface area. The size of micropores in the resin is close to the molecular size of perfluorooctanoates in water, the adsorbate sieving capacity is strong, and the adsorption rate of perfluorinated compounds can be further improved.