Abstract:
A surgical apparatus and methods for severing and welding tissue, in particular blood vessels. The apparatus includes an elongated shaft having a pair of relatively movable jaws at a distal end thereof. A first heating element on one of the jaws is adapted to heat up to a first temperature and form a welded region within the tissue, while a second heating element on one of the jaws is adapted to heat up to a second temperature and sever the tissue within the welded region. The first and second heating elements may be provided on the same or opposite jaws. A control handle provided on the proximal end of the elongated shaft includes controls for opening and closing the jaws, and may include an actuator for sending current through the first and second heating elements. The first and second heating elements may be electrically connected in series, and the first heating element may be bifurcated such that it conducts about one half of the current as the second heating element. A force-limiting mechanism provided either within the control handle, in the elongated shaft, or at the jaws limits the pressure applied to the tissue by the jaws to ensure that the tissue is severed and the ends effectively welded within a short amount of time.
Abstract:
A liquid crystal display is disclosed. In one embodiment, the display includes i) a lower substrate comprising a lower transmissive region and a lower reflective region, wherein a reflecting layer is formed in the lower reflective region, and wherein the reflective layer has a lens shape which comprises a first concave portion and a first convex portion, ii) an upper substrate comprising an upper transmissive region and an upper reflective region, wherein a first overcoat layer is formed in the upper reflective region, and wherein the first overcoat layer has a lens shape which comprises a second concave portion and a second convex portion and iii) a liquid crystal layer positioned between the lower substrate and the upper substrate.
Abstract:
A surgical apparatus includes an elongated shaft having a pair of relatively movable jaws at a distal end thereof. A first heating element on one of the jaws is adapted to heat up to a first temperature and form a welded region within the tissue, while a second heating element on one of the jaws is adapted to heat up to a second temperature and sever the tissue within the welded region. The first and second heating elements may be provided on the same or opposite jaws. A control handle provided on the proximal end of the elongated shaft includes controls for opening and closing the jaws, and may include an actuator for sending current through the first and second heating elements. The first and second heating elements may be electrically connected in series.
Abstract:
A liquid crystal display (LCD) and method for driving the LCD using one or more polarity inversion methods is provided. In one embodiment, the invention relates to a method of driving an LCD comprising a liquid crystal panel partitioned by a plurality of gate lines and data lines and including a plurality of liquid crystal cells arranged in a matrix and auxiliary lines adjacent to and parallel to the gate lines, the auxiliary lines coupled with the plurality of liquid crystal cells, the method including supplying an auxiliary voltage that increases from a low level to a high level on a first pair of auxiliary lines adjacent to each other for a jth frame period, supplying an auxiliary voltage that decreases from a high level to a low level on a second pair of auxiliary lines adjacent to each other for the jth frame period, supplying the auxiliary voltages at levels opposite to the levels of the jth frame period on the first and second pairs of auxiliary lines in a (j+1)th frame period.
Abstract:
In a transflective type fringe field switching liquid crystal display device, the display device may comprise wires including a plurality of gate wirings and a plurality of data wirings providing electric signals to a plurality of pixel regions, wherein each of the pixel regions is partitioned into a transmission region and a reflection region and at least one first transparent electrode having a flat shape and formed in each of the pixel regions. The device may further include a plurality of second transparent electrodes formed over the first transparent electrode, a reflection plate formed on the first transparent electrode located in the reflection region; and a plurality of embossings formed on the reflection plate, wherein the center of each embossing is formed only on the reflection plate.
Abstract:
A method and apparatus for testing specific assembled circuits begins by configuring a plurality of applications specific testing entities to test assembled circuits, where the configuring is based on the types of assembled circuits being tested. Next, a specific assembled circuit testing program is provided to the corresponding application specific testing entity based on the type of assembled circuits it is testing. In addition to providing the testing programs to the testing entities, programming instructions are provided to a programmable handler to pick and place the appropriate assembled circuits with the corresponding applications specific testing entities. When the testing of a particular assembled circuit is complete, a test complete indication is provided. When the test complete indication is received by the host, programming instructions are provided to the programmable handler to remove the integrated circuit from the testing entity and place another integrated circuit in the proximity of the testing entity for subsequent testing.
Abstract:
A surgical apparatus and methods for severing and welding tissue, in particular blood vessels, include a pair of relatively movable jaws at a distal end of an elongated shaft. A first heating element on one of the jaws is adapted to heat up to a first temperature and form a welded region within the tissue, while a second heating element on one of the jaws is adapted to heat up to a second temperature and sever the tissue within the welded region. A force-limiting mechanism is provided to limit the pressure applied to the tissue by the jaws to ensure that the tissue is severed and the ends effectively welded within a short amount of time.
Abstract:
A liquid crystal display (LCD) and method for driving the LCD using one or more polarity inversion methods is provided. In one embodiment, the invention relates to a method of driving an LCD comprising a liquid crystal panel partitioned by a plurality of gate lines and data lines and including a plurality of liquid crystal cells arranged in a matrix and auxiliary lines adjacent to and parallel to the gate lines, the auxiliary lines coupled with the plurality of liquid crystal cells, the method including supplying an auxiliary voltage that increases from a low level to a high level on a first pair of auxiliary lines adjacent to each other for a jth frame period, supplying an auxiliary voltage that decreases from a high level to a low level on a second pair of auxiliary lines adjacent to each other for the jth frame period, supplying the auxiliary voltages at levels opposite to the levels of the jth frame period on the first and second pairs of auxiliary lines in a (j+1)th frame period.
Abstract:
Disclosed is a method for manufacturing an array substrate of a translucent LCD capable of simultaneously forming source and drain metal layers as reflective electrodes while improving both the contact resistance in a transmissive region and the reflectivity properties in a reflective region. The source and drain metal layers have a triple-layered structure of Mo—Al—Mo and, the top Mo is selectively removed from the reflective region. As a result, the screen quality of products improves. In addition, about 5-6 masks are enough to manufacture an array substrate using half-tone exposure technology, in contrast to the prior art which uses 8-11 masks. As the number of masks and processes is reduced in this manner, the manufacturing cost decreases accordingly and the process is simplified.