Abstract:
Compositions and methods for decreasing chemical contamination in subsurface water bearing geological formations, comprising an oxidized form of lignitic coal, or its derivatives, preferably leonardite, and at least one surface active agent. The compositions can be applied to an affected water bearing formation by conventional groundwater management methods, e.g., injection wells and groundwater extraction systems.
Abstract:
Compositions and methods for decreasing chemical contamination in subsurface water bearing geological formations, comprising an oxidized form of lignitic coal, or its derivatives, preferably leonardite, and at least one surface active agent. The compositions can be applied to an affected water bearing formation by conventional groundwater management methods, e.g., injection wells and groundwater extraction systems.
Abstract:
This all pneumatic vacuum gripper which utilizes a fluid amp sensor senses an object when the object comes in contact with vacuum cup. This activates the main venturi vacuum generator which provides the vacuum force necessary to `grip` the object to be lifted. An external release signal cuts the vacuum `off` to release the object. Vacuum power is generated only when lifting the object thus saving energy and also minimizing ambient noise. Sensitivity of pick-up level is also adjustable. The preferred embodiment of the all pneumatic vacuum gripper utilizes fluid logic sensing and processing, senses an object when the object comes in contact with the vacuum cup. This activates the main venturi vacuum generator which provides the vacuum force necessary to "grip" the object to be lifted. The fluid logic circuit automatically locks the vacuum in the suction cup while turning "off" the power supplied to the main venturi after a predetermined period of time. Vacuum power is generated only long enough to pick up the object and lock up the vacuum to hold it. An external release signal unlocks the vacuum to release the object.