摘要:
The present disclosure provides toners and methods for their production. In embodiments, the toner may include a core/shell configuration, with a non-crosslinked resin and a crosslinked resin in the core, with a second non-crosslinked resin in the shell, pigment/pigments and a wax possessing both branched and linear carbons.
摘要:
Encoder-assisted frame loss concealment (FLC) techniques for decoding audio signals are described. A decoder may discard an erroneous frame of an audio signal and may implement the encoder-assisted FLC techniques in order to accurately conceal the discarded frame based on neighboring frames and side-information transmitted from the encoder. The encoder-assisted FLC techniques include estimating magnitudes of frequency-domain data for the frame based on frequency-domain data of neighboring frames, and estimating signs of the frequency-domain data based on a subset of signs transmitted from the encoder as side-information. Frequency-domain data for a frame of an audio signal includes tonal components and noise components. Signs estimated from a random signal may be substantially accurate for the noise components of the frequency-domain data. However, to achieve highly accurate sign estimation for the tonal components, the encoder transmits signs for the tonal components of the frequency-domain data as side-information.
摘要:
This document relates to methods and materials for detecting mutations that can be linked to dementia. For example, methods and materials for detecting one or more mutations within PGRN nucleic acid are provided. This document also provides methods and materials for detecting the level of progranulin expression. In addition, this document relates to methods and materials for treating mammals having a neurodegenerative disorder (e.g., dementia). For example, methods and materials for increasing PGRN polypeptide levels in mammals are provided, as are methods and materials for identifying agents that can be used to increase PGRN polypeptide levels in mammals.
摘要:
A catalyst for hydrotreating, especially hydrodesulfurization, of residua and heavy crudes is prepared by synthesizing the support from titanium and boehmite, to form either a titanium/alumina support (TiO2/Al2O3) or a titanium-alumina support (TiO2—Al2O3) that is thereafter provided with at least one hydrogenating metal from group VIB in oxide form and a promoter from group VIII also in oxide form. The (TiO2/Al2O3) support is prepared from boehmite, which is peptized by using an inorganic acid, then extruded, calcined and impregnated with a solution containing titanium, while the (TiO2—Al2O3) support is prepared by admixing boehmite with a titanium-containing solution, peptized using an inorganic acid, extruded and calcined to obtain the titanium-alumina support.
摘要翻译:通过合成钛和勃姆石的载体,形成钛/氧化铝载体(TiO 2 / Al 2 O 3)或钛 - 氧化铝载体(TiO 2 -Al 2 O 3)制备用于加氢处理,特别是加氢脱硫的残余物和重质原油的催化剂, 然后提供至少一种氧化物形式的VIB的氢化金属和氧化物形式的来自VIII族的助催化剂。 (TiO 2 / Al 2 O 3)载体由勃姆石制备,其通过使用无机酸胶化,然后用含钛的溶液进行挤出,煅烧和浸渍,而(TiO 2 -Al 2 O 3)载体通过将勃姆石与钛 - 使用无机酸胶溶,挤出和煅烧以获得钛 - 氧化铝载体。
摘要:
The present disclosure provides toners and methods for their production. In embodiments, the toner may include a core/shell configuration, with a non-crosslinked resin and a crosslinked resin in the core, with a second non-crosslinked resin in the shell, pigment/pigments and a wax possessing both branched and linear carbons.
摘要:
This disclosure describes techniques that make use of a waveform fetch unit that operates to retrieve waveform samples on behalf of each of a plurality of hardware processing elements that operate simultaneously to service various audio synthesis parameters generated from one or more audio files, such as musical instrument digital interface (MIDI) files. In one example, a method comprises receiving a request for a waveform sample from an audio processing element, and servicing the request by calculating a waveform sample number for the requested waveform sample based on a phase increment contained in the request and an audio synthesis parameter control word associated with the requested waveform sample, retrieving the waveform sample from a local cache using the waveform sample number, and sending the retrieved waveform sample to the requesting audio processing element.
摘要:
A carrier includes at least one magnetic material and a conductive material. The conductive material is at least one carbon nanotube. A developer includes a toner and the carrier.
摘要:
A mobile audio device (for example, a cellular telephone, personal digital audio player, or MP3 player) performs Audio Dynamic Range Control (ADRC) and Automatic Volume Control (AVC) to increase the volume of sound emitted from a speaker of the mobile audio device so that faint passages of the audio will be more audible. This amplification of faint passages occurs without overly amplifying other louder passages, and without substantial distortion due to clipping. Multi-Microphone Active Noise Cancellation (MMANC) functionality is, for example, used to remove background noise from audio information picked up on microphones of the mobile audio device. The noise-canceled audio may then be communicated from the device. The MMANC functionality generates a noise reference signal as an intermediate signal. The intermediate signal is conditioned and then used as a reference by the AVC process. The gain applied during the AVC process is a function of the noise reference signal.
摘要:
A unified filter bank for performing signal conversions may include an interface that receives signal conversion commands in relation to multiple types of compressed audio bitstreams. The unified filter bank may also include a reconfigurable transform component that performs a transform as part of signal conversion for the multiple types of compressed audio bitstreams. The unified filter bank may also include complementary modules that perform complementary processing as part of the signal conversion for the multiple types of compressed audio bitstreams. The unified filter bank may also include an interface command controller that controls the configuration of the reconfigurable transform component and the complementary modules.
摘要:
A mobile audio device (for example, a cellular telephone, personal digital audio player, or MP3 player) performs Audio Dynamic Range Control (ADRC) and Automatic Volume Control (AVC) to increase the volume of sound emitted from a speaker of the mobile audio device so that faint passages of the audio will be more audible. This amplification of faint passages occurs without overly amplifying other louder passages, and without substantial distortion due to clipping. Multi-Microphone Active Noise Cancellation (MMANC) functionality is, for example, used to remove background noise from audio information picked up on microphones of the mobile audio device. The noise-canceled audio may then be communicated from the device. The MMANC functionality generates a noise reference signal as an intermediate signal. The intermediate signal is conditioned and then used as a reference by the AVC process. The gain applied during the AVC process is a function of the noise reference signal.