Abstract:
A process for forming curable powder comprises providing an aqueous dispersion of particles of curable resin and optionally particles comprising at least one curing agent; aggregating the particles optionally with the curing agent to form aggregated particles; coalescing the aggregated particles to form fused particles; and removing the fused particles from the aqueous dispersion. By this process, a curable powder is formed. The curable powder may be used in powder coating.
Abstract:
A carrier includes at least one magnetic material and a conductive material. The conductive material is at least one carbon nanotube. A developer includes a toner and the carrier.
Abstract:
In accordance with the invention, there are electron emitters, charging devices, and methods of forming them. An electron emitter array can include a plurality of nanostructures, each of the plurality of nanostructures can include a first end and a second end, wherein the first end can be connected to a first electrode and the second end can be positioned to emit electrons, and wherein each of the plurality of nanostructures can be formed of one or more of oxidation resistant metals, doped metals, metal alloys, metal oxides, doped metal oxides, and ceramics. The electron emitter array can also include a second electrode in close proximity to the first electrode, wherein one or more of the plurality of nanostructures can emit electrons in a gas upon application of an electric field between the first electrode and the second electrode.
Abstract:
Non-contact corona charging of a small radius moving surface to a desired surface voltage with a single corona charging system with a first corona generator applying a first charge through a screen grid having a first bias voltage to initially charge the surface to more than half of the desired voltage, and then a second corona generator applies the remainder of the desired surface charge through a separate screen grid having a second bias voltage. The two corona generators may be spaced pin arrays angled relative to one another and substantially perpendicular to their adjacent moving surface areas. The two screen grids may be electrically planar and angled relative to one another, substantially parallel to their adjacent moving surface areas.
Abstract:
A cleaning blade is used to clean a photoreceptor surface in an electrophotographic marking system. The elastomeric blade contains an amount of carbon nanotubes that improves the mechanical, electrical and thermal properties for cleaning the photoreceptor surface. The nanotubes can be disposed throughout the elastomer in the blade or can be dispersed only at a tip of the blade or only in the bottom section of the blade.
Abstract:
A system for electrostatic powder coating irregular shaped, three-dimensional articles with 10 μm average diameter powder particles. A supply of powder particles are triboelectrically charged and transported onto one or more donor rolls without the need from fluidization of the powder particles. The charged powder particles on the one or more donor rolls are metered to provide a uniform layer thereon. A combination of AC electric fields and/or air jet detach the powder particles from the one or more donor rolls and produce a powder cloud that is directed to the grounded article to be coated. A layer of powder particles coats the outer surface of the article, and the layer is subsequently cured to form a permanent and durable film on the article.
Abstract:
A non-interactive development system generates a toner cloud in a development zone by an AC biased stationary electrode positioned in contact with the back surface of a movable toned dielectric donor belt having a patterned electrode structure on the front surface thereof. The AC biased electrode produces AC fringe fields near the edges of the patterned electrode structure that cause the generation of a toner cloud for developing an electrostatic latent image. The donor belt is partially wrapped around a magnetic brush to produce a toner loading zone. Isolated patterned electrodes on the donor belt near the entrance region of the toner loading zone are biased to cause unloading of toner from the donor belt, while isolated electrodes near the exit region of the toner loading zone are biased to cause toner reloading of the donor belt.
Abstract:
Disclosed is a toner comprising particles of a polyester resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment of the present invention is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process.
Abstract:
Disclosed is a toner comprising particles of a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment of the present invention is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process.
Abstract:
A marking apparatus is disclosed in which a propellant stream is passed through a channel and directed toward a substrate. Marking material, such as ink, toner, etc., is controllably introduced into the propellant stream and imparted with sufficient kinetic energy thereby to be made incident upon a substrate. At sufficient velocity, and with appropriate marking material, the marking material may be kinetically fused to the substrate. A multiplicity of channels for directing the propellant and marking material allow for high throughput, high resolution marking. Multiple marking materials may be introduced into the channel and mixed therein prior to being made incident on the substrate, or mixed or superimposed on the substrate without registration. One example is a single-pass, full-color printer.