Abstract:
The present disclosure provides bandwidth defragmentation systems and methods in optical networks such as Optical Transport Network (OTN), Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), Ethernet, and the like. In particular, the present invention includes bandwidth defragmentation algorithms that may be used within the context of a signaling and routing protocol to avoid bandwidth defragmentation. As such, the present invention defines a mechanism for computing an end to end path for a connection in a manner that avoids bandwidth fragmentation and provides for better network utilization. For example, the present invention may include a path computation based upon administrative weight and upon fragmentation costs. This may be implemented in existing signaling and routing protocols without changes to existing protocol messages used in topology discovery. Further, the present invention optimizes available bandwidth allowing a higher probability of higher bandwidth request being admitted.
Abstract:
The present invention relates to salts of (R)-5-(2-phenylsulphonylethenyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole of the formula: wherein HX is an acid selected from para-toluene sulfonic acid, benzene sulphonic acid, trifluoroacetic acid, methane sulphonic acid, formic acid and succinic acid; and to processes of preparing and using such salts.
Abstract:
A system is provided for controlling slip of a ground-engaging traction device of a work machine. The system includes an actual slip calculator operable to transmit an actual slip signal corresponding to an actual slip experienced by the work machine. The system also includes a ground condition selector operable to transmit a ground condition signal corresponding to a selected ground condition. A desired slip calculator is operable to transmit a desired slip signal based on the ground condition signal. A slip controller is coupled with the actual slip calculator and the desired slip calculator. The slip controller is operable to transmit a slip control signal based on the actual slip signal and the desired slip signal. The slip control signal controls the actual slip experienced by the work machine to achieve the desired slip.
Abstract:
A method is provided for controlling braking in a vehicle having a motor and a brake. The method includes sensing an actual operating parameter of the motor and receiving a desired operating parameter of the motor. The motor is controlled based on the actual operating parameter and the desired operating parameter of the motor. The brake is controlled based on the actual operating parameter and the desired operating parameter of the motor and an output from the motor control.
Abstract:
A system is provided for controlling slip of a ground-engaging traction device of a work machine. The system includes an actual slip calculator operable to transmit an actual slip signal corresponding to an actual slip experienced by the work machine. The system also includes a ground condition selector operable to transmit a ground condition signal corresponding to a selected ground condition. A desired slip calculator is operable to transmit a desired slip signal based on the ground condition signal. A slip controller is coupled with the actual slip calculator and the desired slip calculator. The slip controller is operable to transmit a slip control signal based on the actual slip signal and the desired slip signal. The slip control signal controls the actual slip experienced by the work machine to achieve the desired slip.
Abstract:
A system for controlling a power output is disclosed. The system includes a hydraulic actuator configured to output a first torque and a source of pressurized fluid configured to supply a flow of pressurized fluid to the hydraulic actuator. The system further includes a controller configured to control the flow of pressurized fluid as a function of the first torque, a predetermined torque, and changes to the first torque caused by a load operatively connected to the hydraulic actuator.
Abstract:
A method is provided for controlling braking in a vehicle having a motor and a brake. The method includes sensing an actual operating parameter of the motor and receiving a desired operating parameter of the motor. The motor is controlled based on the actual operating parameter and the desired operating parameter of the motor. The brake is controlled based on the actual operating parameter and the desired operating parameter of the motor and an output from the motor control.
Abstract:
A system for controlling a power output is disclosed. The system includes a hydraulic actuator configured to output a first torque and a source of pressurized fluid configured to supply a flow of pressurized fluid to the hydraulic actuator. The system further includes a controller configured to control the flow of pressurized fluid as a function of the first torque, a predetermined torque, and changes to the first torque caused by a load operatively connected to the hydraulic actuator.