摘要:
A method, in an intermediate node in a control plane network, includes receiving a setup message from an originating node, wherein the setup message is sent towards a terminating node on a computed path in the control plane network, and the setup message indicates associated Layer 0 attributes; validating the associated attributes/constraints based on locally available resources; and performing one of: forwarding the setup message on the path towards the terminating node when validation is successful; forwarding the setup message on the path towards the terminating node with updated information indicating a rejection cause and additional information when the validation is unsuccessful, but a modification of the Layer 0 attributes/constraints is possible; and forwarding a release message on the path back to the originating node with updated information indicating a rejection cause and additional information when the validation is unsuccessful and no modifications of the Layer 0 attributes/constraints are possible.
摘要:
A method, a system, and a network for coordination between a data control plane and photonic control in a network include operating the data control plane with photonic control messaging included therein, wherein the data control plane is configured to at least establish end-to-end paths between a plurality of network elements at Layer 1; transmitting a photonic control message in or by the data control plane responsive to a requirement for photonic layer information; processing, via the data control plane, the photonic layer information received from photonic control responsive to the photonic control message, wherein the photonic control is configured to adjust photonic hardware responsive to a change at a photonic layer; and performing an action by the data control plane considering the photonic layer information.
摘要:
A method, a system, and a network for coordination between a data control plane and photonic control in a network include operating the data control plane with photonic control messaging included therein, wherein the data control plane is configured to at least establish end-to-end paths between a plurality of network elements at Layer 1; transmitting a photonic control message in or by the data control plane responsive to a requirement for photonic layer information; processing, via the data control plane, the photonic layer information received from photonic control responsive to the photonic control message, wherein the photonic control is configured to adjust photonic hardware responsive to a change at a photonic layer; and performing an action by the data control plane considering the photonic layer information.
摘要:
To obtain point of interest information in a vicinity of a vehicle, the vehicle selects a reference point away from the current location of the vehicle. A region is formed, including the current location of the vehicle, based on the reference point. Points of interest falling within the region are communicated to the vehicle.
摘要:
According to one embodiment of the present invention, a software architecture encoded on a computer readable medium is disclosed. The software architecture can be utilized for developing in-vehicle software applications for installation and execution on an in-vehicle computer system. The software architecture includes a number of vehicle application program interfaces (APIs) for accessing vehicles systems or data and for developing in-vehicle software applications; and a number of policy restrictions underlying the vehicle APIs for restricting the level of access to vehicle systems and data while the in-vehicle software application is being developed.
摘要:
To obtain point of interest information in a vicinity of a vehicle, the vehicle selects a reference point away from the current location of the vehicle. A region is formed, including the current location of the vehicle, based on the reference point. Points of interest falling within the region are communicated to the vehicle.
摘要:
A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
摘要:
The ability to perform Assembly/Disassembly analysis of one or more components of the geometric model (e.g., a CAD model) of a multi-component assembly is helpful for design, construction and tear-down, maintenance (in-place and replacement), and reuse/recycling of the assembly. To facilitate assembly and disassembly analysis of geometric models, methods have been developed which allow generating, editing, validating and animating/digitizing assembly/disassembly sequences and directions for 3D geometric models, e.g., CAD models. These methods allow assembly/disassembly analysis to be performed based on non-contact geometric reasoning (i.e., spatial reasoning rather than contact reasoning) to determine an optimal non-interfering sequence (a valid sequence) to disassemble/assemble the modeled components. The methods are readily implemented in computers and similar electronic processing units to allow automated assembly/disassembly analysis, as exemplified by a software system called Assembly Disassembly in Three Dimensions (A3D). The A3D system maintains a hierarchical assembly structure for the geometric model and allows the user to add constraints to possible assembly/disassembly sequences, edit the overall shape of a modeled component, compute the resultant sequence of component removals/additions and their paths, and visualize assembly/disassembly by displaying the assembled and disassembled model and animating its assembly/disassembly steps.
摘要:
A method, in an intermediate node in a control plane network, includes receiving a setup message from an originating node, wherein the setup message is sent towards a terminating node on a computed path in the control plane network, and the setup message indicates associated Layer 0 attributes; validating the associated attributes/constraints based on locally available resources; and performing one of: forwarding the setup message on the path towards the terminating node when validation is successful; forwarding the setup message on the path towards the terminating node with updated information indicating a rejection cause and additional information when the validation is unsuccessful, but a modification of the Layer 0 attributes/constraints is possible; and forwarding a release message on the path back to the originating node with updated information indicating a rejection cause and additional information when the validation is unsuccessful and no modifications of the Layer 0 attributes/constraints are possible.
摘要:
The present disclosure provides bandwidth defragmentation systems and methods in optical networks such as Optical Transport Network (OTN), Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), Ethernet, and the like. In particular, the present invention includes bandwidth defragmentation algorithms that may be used within the context of a signaling and routing protocol to avoid bandwidth defragmentation. As such, the present invention defines a mechanism for computing an end to end path for a connection in a manner that avoids bandwidth fragmentation and provides for better network utilization. For example, the present invention may include a path computation based upon administrative weight and upon fragmentation costs. This may be implemented in existing signaling and routing protocols without changes to existing protocol messages used in topology discovery. Further, the present invention optimizes available bandwidth allowing a higher probability of higher bandwidth request being admitted.