Abstract:
A liquid crystal display is furnished with: a liquid crystal display element having a pair of substrates, to which alignment members are provided to their respective opposing surfaces, and a liquid crystal layer sandwiched by the pair of substrates; an alignment mechanism for providing at least two different director configurations simultaneously on different arbitrary regions used for display in the liquid crystal layer; and a reflection film provided to at least one of the different arbitrary regions showing different director configurations; wherein the different arbitrary regions showing different director configurations are used for a reflection display section for showing reflection display and a transmission display section for showing transmission display, respectively. Examples of the alignment mechanism include an alignment film to which the alignment treatment is applied in different orientations in the reflection display section and transmission display section, respectively, an insulation film having different film thicknesses in the reflection display section and transmission display section, and so forth.
Abstract:
A liquid crystal display is furnished with: a liquid crystal display element having a pair of substrates, to which alignment members are provided to their respective opposing surfaces, and a liquid crystal layer sandwiched by the pair of substrates; an alignment mechanism for providing at least two different director configurations simultaneously on different arbitrary regions used for display in the liquid crystal layer; and a reflection film provided to at least one of the different arbitrary regions showing different director configurations; wherein the different arbitrary regions showing different director configurations are used for a reflection display section for showing reflection display and a transmission display section for showing transmission display, respectively. Examples of the alignment mechanism include an alignment film to which the alignment treatment is applied in different orientations in the reflection display section and transmission display section, respectively, an insulation film having different film thicknesses in the reflection display section and transmission display section, and so forth.
Abstract:
A liquid crystal display is furnished with: a liquid crystal display element having a pair of substrates, to which alignment members are provided to their respective opposing surfaces, and a liquid crystal layer sandwiched by the pair of substrates; an alignment mechanism for providing at least two different director configurations simultaneously on different arbitrary regions used for display in the liquid crystal layer; and a reflection film provided to at least one of the different arbitrary regions showing different director configurations; wherein the different arbitrary regions showing different director configurations are used for a reflection display section for showing reflection display and a transmission display section for showing transmission display, respectively. Examples of the alignment mechanism include an alignment film to which the alignment treatment is applied in different orientations in the reflection display section and transmission display section, respectively, an insulation film having different film thicknesses in the reflection display section and transmission display section, and so forth.
Abstract:
The present invention offers reflective color liquid crystal display devices with a high contrast ratio and eye-friendly multi-color display capability, and liquid crystal display devices incorporating a touch panel arranged therefrom, of which the display is not adversely affected by the installation of a pressure sensitive input device. In a reflective liquid crystal display device arranged from a light reflexible substrate (5) and a substrate (4); a liquid crystal layer (1) in which nematic liquid crystal having a positive dielectric anisotropy is sandwiched between the substrates (4) and (5); a first optical retardation compensator plate (8); a second optical retardation compensator plate (9); and a polarizer plate (10), {circle around (1)} the retardation of the optical retardation compensator plates (8 and 9) in the substrate normal direction, {circle around (2)} the angle formed by the slow axes of the optical retardation compensator plates (8 and 9) and either the transmission axis or the absorption axis of the polarizer plate (10), {circle around (3)} the twist angle of the liquid crystal layer (1), {circle around (4)} the product of the birefringence difference of the liquid crystal in the liquid crystal layer (1) and the thickness of the liquid crystal layer, and {circle around (5)} the angle formed by the alignment direction of the liquid crystal molecules in a close proximity of the substrate (4) and either the transmission axis or the absorption axis of the polarizer plate are optimized.
Abstract:
A liquid crystal display is furnished with: a liquid crystal display element having a pair of substrates, to which alignment members are provided to their respective opposing surfaces, and a liquid crystal layer sandwiched by the pair of substrates; an alignment mechanism for providing at least two different director configurations simultaneously on different arbitrary regions used for display in the liquid crystal layer; and a reflection film provided to at least one of the different arbitrary regions showing different director configurations; wherein the different arbitrary regions showing different director configurations are used for a reflection display section for showing reflection display and a transmission display section for showing transmission display, respectively. Examples of the alignment mechanism include an alignment film to which the alignment treatment is applied in different orientations in the reflection display section and transmission display section, respectively, an insulation film having different film thicknesses in the reflection display section and transmission display section, and so forth.
Abstract:
A full-color liquid crystal display device is provided which includes: a first substrate formed with a plurality of liquid crystal driving active elements; and first, second and third liquid crystal cells stacked one on another on an inter-layer film formed on the first substrate; the first liquid crystal cell including a first liquid crystal driving electrode connected to a first liquid crystal driving active element formed on the first substrate; the second liquid crystal cell formed on the second substrate and including a second liquid crystal driving electrode connected to a second liquid crystal driving active element formed on the first substrate via a lower stereo-interconnection extending through the first liquid crystal cell; the third liquid crystal cell formed on the third substrate and including a third liquid crystal driving electrode connected to a third liquid crystal driving active element formed on the first substrate via another lower stereo-interconnection extending through the first liquid crystal cell and an upper stereo-interconnection extending through the second liquid crystal cell.
Abstract:
A liquid crystal display device is disclosed. The display device uses a phase transition type guest-host mode. The device is made with a pair of substrates (31, 45). One substrate is a transparent substrate and having a transparent electrode (47) and an aligning film (48) formed in this order. The other substrate is located opposite to the transparent substrate and has an insulating film (34), a reflection plate (38), and an aligning film (44) formed in this order. The reflection plate has projections (42a,b) at the surface. The aligning films are subjected to a vertical aligning treatment relative to the respective substrates. A liquid crystal composition is disposed between the aligning films, and has a nematic liquid crystal, a chiral additive and a two-tone pigment. A helical pitch (P.sub.o) of the liquid crystal composition and the cell thickness (d) of the liquid crystal display device satisfy the relation of 1.5
Abstract:
To provide a light-emitting device which can emit bright light without increasing the projected area of a light-emitting element and be manufactured with high yield. A light-emitting device of one embodiment of the present invention includes a plurality of projections; a first electrode formed along the plurality of projections; a layer containing a light-emitting organic compound formed along the plurality of projections and over the first electrode; and a second electrode formed along the plurality of projections and over the layer containing a light-emitting organic compound. Further, the plurality of projections each have a bottom surface having a side in contact with a bottom surface of an adjacent projection; a plurality of side surfaces each having a certain angle greater than 0° and less than or equal to 80° with respect to the bottom surface; and a vertex having a first continuously curved surface.
Abstract:
A liquid crystal display is furnished with: a liquid crystal display element having a pair of substrates, to which alignment members are provided to their respective opposing surfaces, and a liquid crystal layer sandwiched by the pair of substrates; an alignment mechanism for providing at least two different director configurations simultaneously on different arbitrary regions used for display in the liquid crystal layer; and a reflection film provided to at least one of the different arbitrary regions showing different director configurations; wherein the different arbitrary regions showing different director configurations are used for a reflection display section for showing reflection display and a transmission display section for showing transmission display, respectively. Examples of the alignment mechanism include an alignment film to which the alignment treatment is applied in different orientations in the reflection display section and transmission display section, respectively, an insulation film having different film thicknesses in the reflection display section and transmission display section, and so forth.
Abstract:
A liquid crystal display is furnished with: a liquid crystal display element having a pair of substrates, to which alignment members are provided to their respective opposing surfaces, and a liquid crystal layer sandwiched by the pair of substrates; an alignment mechanism for providing at least two different director configurations simultaneously on different arbitrary regions used for display in the liquid crystal layer; and a reflection film provided to at least one of the different arbitrary regions showing different director configurations; wherein the different arbitrary regions showing different director configurations are used for a reflection display section for showing reflection display and a transmission display section for showing transmission display, respectively. Examples of the alignment mechanism include an alignment film to which the alignment treatment is applied in different orientations in the reflection display section and transmission display section, respectively, an insulation film having different film thicknesses in the reflection display section and transmission display section, and so forth.