摘要:
A control method of an ion implantation device that radiates an ion beam emitted from an ion source via an optical element onto a material to be treated, includes the steps of: measuring the spatial distribution of the ion beam in the vicinity of the material to be treated; estimating the emittance, which is the spatial and angular distribution of the ion beam of the ion source, from the measured spatial distribution, by using an ion beam trajectory calculation method; calculating the operating conditions of the optical element so that the ion beam in the vicinity of the material to be treated has a desired spatial distribution, by using the estimated emittance and the trajectory calculation method; and operating the ion implantation device by using the calculated operating conditions of the optical element.
摘要:
An ion implanter for manufacturing a single crystal film by extracting a hydrogen ion or a rare-gas ion from an ion source, selects a desired ion with a first sector electromagnet, scanning the ion with a scanner, collimates the ion with a second sector electromagnet, and implants it into a substrate; the ion source is configured to be located close to the entrance side focal point of the first sector electromagnet. In this case, when an aperture of an extraction section of the ion source is circular and entrance side focal points in a deflection surface and a surface perpendicular thereto in the first sector electromagnet are coincident, the ion beam after passing the first sector electromagnet becomes completely parallel in the two surfaces and the spot shape becomes a circle.
摘要:
A vacuum freeze-drying apparatus capable of rapid drying is provided. A cold trap for drying, which is arranged inside a drying chamber, is set to a low temperature of −70 degrees Celsius or below, and heat is supplied to frozen particles on a conveyor belt to a degree such that the frozen particles do not melt. The amount of the liquid component evaporating from the frozen particles increases, and the amount of the liquid component entering the frozen particles decreases so that the time for drying the frozen particles is shortened.
摘要:
A vacuum freeze-drying apparatus capable of rapid drying is provided. A cold trap for drying, which is arranged inside a drying chamber, is set to a low temperature of −70 degrees Celsius or below, and heat is supplied to frozen particles on a conveyor belt to a degree such that the frozen particles do not melt. The amount of the liquid component evaporating from the frozen particles increases, and the amount of the liquid component entering the frozen particles decreases so that the time for drying the frozen particles is shortened.
摘要:
An ion implanter for manufacturing a single crystal film by extracting a hydrogen ion or a rare-gas ion from an ion source, selects a desired ion with a first sector electromagnet, scanning the ion with a scanner, collimates the ion with a second sector electromagnet, and implants it into a substrate; the ion source is configured to be located close to the entrance side focal point of the first sector electromagnet. In this case, when an aperture of an extraction section of the ion source is circular and entrance side focal points in a deflection surface and a surface perpendicular thereto in the first sector electromagnet are coincident, the ion beam after passing the first sector electromagnet becomes completely parallel in the two surfaces and the spot shape becomes a circle.
摘要:
A control method of an ion implantation device that radiates an ion beam emitted from an ion source via an optical element onto a material to be treated, includes the steps of: measuring the spatial distribution of the ion beam in the vicinity of the material to be treated; estimating the emittance, which is the spatial and angular distribution of the ion beam of the ion source, from the measured spatial distribution, by using an ion beam trajectory calculation method; calculating the operating conditions of the optical element so that the ion beam in the vicinity of the material to be treated has a desired spatial distribution, by using the estimated emittance and the trajectory calculation method; and operating the ion implantation device by using the calculated operating conditions of the optical element.
摘要:
An ion implantation device that suppresses diffusion of an ion beam, can finely control a scanning waveform, and can obtain a large scanning angle of about 10°. In the ion implantation device, first, second, and third chambers are arranged in predetermined places on a beam line, first and second gaps intervene between the first chamber and the second chamber and between the second chamber and the third chamber. The second chamber is electrically insulated from the first and third chambers via first and second electrode pairs attached to the first and second gaps, respectively. The first and second electrode pairs obliquely cross a standard axis of the ion beam at a predetermined angle in opposite directions, and the second chamber is connected to a scanning power source that applies an electric potential having a desired scanning waveform.
摘要:
To provide an ion implantation device which suppresses diffusion of an ion beam, can finely control a scanning waveform and can obtain a large scanning angle of about 10°.In the ion implantation device, first, second and third chambers 12A, 14A and 16A are arranged in predetermined places on a beam line, first and second gaps 20A and 22A intervene between the first chamber 12A and the second chamber 14A and between the second chamber 14A and the third chamber 16A, the second chamber 14A is electrically insulated from the first and third chambers 12A and 16A via first and second electrode pairs 26A and 28A attached to the first and second gaps 20A and 22A, respectively, the first and second electrode pairs 26A and 28A obliquely cross a standard axis J of the ion beam at a predetermined angle in opposite directions, and the second chamber 14 is connected to a scanning power source 40A which applies an electric potential having desired scanning waveform.
摘要:
An ion implantation apparatus is provided with an ion source and a mass spectrometer having an analyzer magnet and is adapted to take out ions having a predetermined kinetic energy and mass from other ions produced in the ion source. It further includes a scanner system for scanning an ion beam of the take-out ions and irradiating the ion beam onto a substrate. The scanner system includes a deflection electro-magnet which is disposed downstream of the mass spectrometer for deflecting the ion beam in a predetermined plane with respect to a reference axis. A second vacuum chamber portion through which the ion beam passes in the magnetic field of the deflection electro-magnet is provided and a first vacuum chamber portion electrically independent of the second vacuum chamber portion is also provided through which the ion beam passes in the magnetic field of the mass analyzer. A third vacuum chamber portion is also provided through which the ion beam passes and in which the substrate is arranged for irradiation. The second vacuum chamber portion is applied by a potential for modulating the potential of the ion be and the deflection electro-magnet defects the modulated ion beam so that the deflection angle of the ion beam is modulated and the ion beam is scanned and irradiated onto the substrate.