Abstract:
An optical transceiver module is provided with an elongated delatching pull tab that that enables an optical transceiver module to be easily delatched and pulled from a cage without having to first unplug optical fiber cables from the module and without having to rotate a bail. Thus, the number of manual actions that need to be performed by a user to remove the module from a cage is drastically reduced, which makes simplifies the removal process and makes the design well suited for use in hot-pluggable environments. In addition, the delatching pull tab obviates the need for pins or screws, thereby improving manufacturing yield by reducing the likelihood that the module will be damaged during the manufacturing process. In addition, by eliminating pins or screws and a bail from the design, there are fewer moving parts that can wear out over time.
Abstract:
An opto-electronic communication module includes a housing, a circuit substrate, and an opto-electronic communication device, such as a laser, mounted on the circuit substrate. A protrusion that is unitarily formed in the housing extends through the circuit substrate to provide a thermal path to promote dissipation of heat emitted by the opto-electronic communication device.
Abstract:
Alignment of one or more lenses with one or more opto-electronic devices in an opto-electronic system is aided by an aligner device having a substantially cylindrical body with a base and an outer ring. The base has one or more openings, one of which is a first opto-electronic device opening. The first opto-electronic device opening has a substantially circular shape coaxial with the outer ring and coaxial with a central axis of the aligner device.
Abstract:
A pluggable connector, such as an optical transceiver is provided for coupling an information system unit to a fiber optical cable. The connector includes a housing, a moveable collar disposed on an optical connector end of the housing, said collar surrounding an optical connector, a cam connected to said moveable collar and a spring loaded latch extending from a side of said housing for engaging a receptacle on the information system unit so as to secure the connector in the receptacle, said cam engaging the spring loaded latch such that when the moveable collar is pulled in a direction away from the housing the latch is retracted to enable the connector to be released from the receptacle.
Abstract:
A Z-pluggable optical communications module (OCM) is provided that contains multiple parallel OCMs (POCMs) and that is configured to be removably plugged into an opening formed in a front panel of an optical communications system. When the Z-pluggable OCM is plugged in a forward Z-direction into the opening formed in the front panel, an actuator mechanism is actuated to impart motion to the Z-pluggable OCM in the downward Y-direction to cause the Z-pluggable OCM to be mounted on an upper surface of a motherboard PCB. In order to unplug the Z-pluggable OCM, the actuator mechanism is actuated to impart motion to the Z-pluggable OCM in the upward Y-direction to cause it to be dismounted from the motherboard PCB.
Abstract:
A connection system and method in which, when a plug portion is mated with a receptacle portion, a reflector in the plug portion can redirect optical signals between an end of an optical fiber in the plug portion and an opto-electronic device, such as a light source or light receiver, in the receptacle portion
Abstract:
A module retention and electromagnetic interference (EMI) cage has a substantially flat, rectangular metal frame with retaining clip portions and EMI-shielding contact fingers. The frame has surface-mount legs to facilitate surface mounting the cage to the circuit board. An array connector is mounted on the circuit board within a central region of the cage. An electronic module can be inserted or plugged into the cage in conjunction with connecting the module to the array connector. As the module is inserted into the cage, the module resiliently deflects the EMI-shielding contact fingers. At approximately the same time as the connector of the electronic module mates with the array connector, the retaining clip portion mates with a portion of the housing to retain the module in this position.
Abstract:
A module retention and electromagnetic interference (EMI) cage has a substantially flat, rectangular metal frame with retaining clip portions and EMI-shielding contact fingers. The frame has surface-mount legs to facilitate surface mounting the cage to the circuit board. An array connector is mounted on the circuit board within a central region of the cage. An electronic module can be inserted or plugged into the cage in conjunction with connecting the module to the array connector. As the module is inserted into the cage, the module resiliently deflects the EMI-shielding contact fingers. At approximately the same time as the connector of the electronic module mates with the array connector, the retaining clip portion mates with a portion of the housing to retain the module in this position.
Abstract:
A protective socket is provided for use with a parallel optical transceiver module. When the parallel optical transceiver module is seated within a receptacle of the protective socket, the side walls and bottom that define the receptacle of the protective socket protect the internal components of the parallel optical transceiver module from dirt, dust, gases, and other airborne matter.