摘要:
A nickel (Ni) based alloy for forging includes: 0.001 to 0.1 wt. % of carbon (C); 12 to 23 wt. % of chromium (Cr); 3.5 to 5.0 wt. % of aluminum (Al); 5 to 12 combined wt. % of tungsten (W) and molybdenum (Mo) in which the Mo content is 5 wt. % or less; a negligible small amount of titanium (Ti), tantalate (Ta) and niobium (Nb); and the balance of Ni and inevitable impurities.
摘要:
Disclosed are a high-strength Ni-base alloy, a method of producing the Ni-base alloy, and a method of recovering a member made of a degraded Ni-base alloy. It contains not more than 0.1 wt % C, not more than 50 wt % Fe, not more than 30 wt % Cr, Ti, and at least one of Nb and Al. It has been strengthened by precipitates of a γ′ phase (Ni3Al) and/or a γ″ phase (Ni3Nb). It contains also a η phase (Ni3Ti) which is thermodynamically stable in a temperature range of 800° C. to 900° C. When observed a cross-section of the Ni-base alloy, a plurality of nodes exist along each segment connecting two meeting points each of which point is defined by adjacent three crystal grains, and precipitates of the γ′ phase and/or the γ″ phase in each of crystal grains of the Ni-base alloy have an average particle size of not more than 100 nm.
摘要:
A Ni-based heat resistant alloy has a composition of, by mass percent, carbon: 0.001 to 0.1%, chromium: 16 to 22%, aluminum: 0.5 to 1.5%, molybdenum: 0.1 to 2.0%, tungsten: 0.1 to 6.0%, niobium: 3.5 to 5.5%, titanium: 0.8 to 3.0%, iron: 16 to 20%, and the balance being nickel and inevitable impurities. A parameter Ps indicating a segregation tendency is in a range of Ps≧−3.5. The parameter Ps is represented by Formula (1). Ps=1.05×Al content+0.6×Ti content−0.8×Nb content−0.3×Mo content (1)
摘要:
It is an object of the present invention to provide an Ni based alloy for forging having high forging-related characteristics with a wide temperature range for high-temperature forging and high upper forging temperature limit.An Ni based alloy for forging, containing Cr at 12 to 20%, Al at 3.5 to 5%, Co at 15 to 23%, W at 5 to 12%, C at 0.001 to 0.05%, and Nb, Ti and Ta at a total content of 0.5 to 1.0%, all percentages by mass, and a steam turbine plant component using the same.
摘要:
Disclosed is a low-thermal-expansion Ni-based super-heat-resistant alloy for a boiler, which has excellent high-temperature strength. The alloy can be welded without the need of carrying out any aging treatment. The alloy has a Vickers hardness value of 240 or less. The alloy comprises (by mass) C in an amount of 0.2% or less, Si in an amount of 0.5% or less, Mn in an amount of 0.5% or less, Cr in an amount of 10 to 24%, one or both of Mo and W in such an amount satisfying the following formula: Mo+0.5 W=5 to 17%, Al in an amount of 0.5 to 2.0%, Ti in an amount of 1.0 to 3.0%, Fe in an amount of 10% or less, and one or both of B and Zr in an amount of 0.02% or less (excluding 0%) for B and in an amount of 0.2% or less (excluding 0%) for Zr, with the remainder being 48 to 78% of Ni and unavoidable impurities.
摘要:
A nickel (Ni) based alloy for forging includes: 0.001 to 0.1 wt. % of carbon (C); 12 to 23 wt. % of chromium (Cr); 3.5 to 5.0 wt. % of aluminum (Al); 5 to 12 combined wt. % of tungsten (W) and molybdenum (Mo) in which the Mo content is 5 wt. % or less; a negligible small amount of titanium (Ti), tantalate (Ta) and niobium (Nb); and the balance of Ni and inevitable impurities.
摘要:
A welding material composition, which is a nickel based super alloy having γ′ phase and chromium carbides precipitated. The composition comprising 18 to 25% by weight of Co, 15 to 20% by weight of Cr, 1.5 to 5.5% by weight of Al, 5 to 14% by weight of W, 0.05 to 0.15% by weight of C, 0 to 0.02% by weight of B, 0 to 1% by weight of at least one of Ta, Nb, Ti, Mo, Re and Fe, 0 to 0.5% by weight of at least one of V, Zr, rare earth elements and Y, 0 to 1% by weight of Mn, 0 to 0.5% by weight of Si, and the balance being Ni.
摘要:
In a gas turbine blade where a part of the γ′ phase precipitation strengthened type Ni-based alloy base material is composed of a weld metal, the weld metal is a Ni-based alloy containing Ta from 4.8 to 5.3 wt. %, Cr from 18 to 23 wt. %, Co from 12 to 17 wt. %, W from 14 to 18 wt. %, C from 0.03 to 0.1 wt. %, Mo from 1 to 2 wt. %, and Al of 1 wt. % or less, in which the oxygen content is 0 to 30 ppm, the Ti content from 0 to 0.1 wt. %, and the Re content from 0 to 0.5 wt. %. A blade base metal is manufactured by the step of stripping, the step of solution heat treatment where the γ′ phase is dissolved again, the step of welding in an inert gas chamber by a TIG method using a welding wire where the weld metal can be obtained, the step of HIP treatment at 1100° C. to 1150° C., and the step of an aging treatment at 835° C. to 855° C.
摘要:
Provided is high corrosion resistant equipment for a plant having the lining structure which exhibits high reliability against breaking of a joining portion over a long use period. The high corrosion resistant equipment for a plant includes a lining plate and a support portion which are made of a high corrosion resistance material and a structural material portion made of a steel material or the like. The lining plate and the support portion include a joining portion to which friction stirring is applied. The support portion is assembled into or fastened to the structural material portion by means of the geometrical structure with a gap interposed between the support portion and the structural material portion. Due to such a constitution, high corrosion resistant equipment for a plant having the lining which exhibits high reliability can be acquired.
摘要:
A heat resistant alloy member that maintains the creep strength and improves the fatigue characteristics is provided. The heat resistant alloy member according to the present invention includes a recrystallized structure layer including finer grains on the surface of the member than those inside of the member. The recrystallized structure layer is formed by forming a stirred layer by giving processing strain to the surface of the member using a friction stir processing, and applying recrystallization heat treatment to the stirred layer for recrystallization.