摘要:
The invention provides a method for forming thin film transistors including a polycrystalline semiconducting film. The method comprises depositing a first layer of amorphous semiconducting thin film on to a substrate; depositing a second layer of thin film on to the first layer of amorphous semiconducting thin film; patterning the second layer of thin film so that the first layer of amorphous semiconducting thin film is exposed at selected locations; exposing the first and second layers of thin film to a nickel containing compound in either a solution or a vapor phase; removing the second layer of thin film; and annealing the first layer of amorphous semiconducting thin film at an elevated temperature so the first layer of amorphous semiconducting thin film converts into a polycrystalline semiconducting thin film.
摘要:
The invention provides a method for forming thin film transistors including a polycrystalline semiconducting film. The method comprises depositing a first layer of amorphous semiconducting thin film on to a substrate; depositing a second layer of thin film on to the first layer of amorphous semiconducting thin film; patterning the second layer of thin film so that the first layer of amorphous semiconducting thin film is exposed at selected locations; exposing the first and second layers of thin film to a nickel containing compound in either a solution or a vapor phase ; removing the second layer of thin film; and annealing the first layer of amorphous semiconducting thin film at an elevated temperature so the first layer of amorphous semiconducting thin film converts into a polycrystalline semiconducting thin film.
摘要:
The invention provides a method for forming thin film transistors including a polycrystalline semiconducting film. The method comprises depositing a first layer of amorphous semiconducting thin film on to a substrate; depositing a second layer of thin film on to the first layer of amorphous semiconducting thin film; patterning the second layer or thin film so that the first layer of amorphous semiconducting thin film is exposed at selected locations; exposing the first and second layers of thin film to a nickel containing compound in either a solution or a vapor phase; removing the second layer of thin film; and annealing the first layer of amorphous semiconducting thin film at an elevated temperature so the first layer of amorphous semiconducting thin film converts into a polycrystalline semiconducting thin film.
摘要:
The invention provides a method for forming thin film transistors including a polycrystalline semiconducting film. The method comprises depositing a first layer of amorphous semiconducting thin film on to a substrate; depositing a second layer of thin film on to the first layer of amorphous semiconducting thin film; patterning the second layer of thin film so that the first layer of amorphous semiconducting thin film is exposed at selected locations; exposing the first and second layers of thin film to a nickel containing compound in either a solution or a vapor phase ; removing the second layer of thin film; and annealing the first layer of amorphous semiconducting thin film at an elevated temperature so the first layer of amorphous semiconducting thin film converts into a polycrystalline semiconducting thin film.
摘要:
A low temperature polycrystalline silicon device and techniques to manufacture thereof with excellent performance. Employing doped poly-Si lines which we called a bridged-grain structure (BG), the intrinsic or lightly doped channel is separated into multiple regions. A single gate covering the entire active channel including the doped lines is still used to control the current flow. Using this BG poly-Si as an active layer and making sure the TFT is designed so that the current flows perpendicularly to the parallel lines of grains, grain boundary effects can be reduced.
摘要:
A low temperature polycrystalline silicon device and techniques to manufacture thereof with excellent performance. Employing doped poly-Si lines which we called a bridged-grain structure (BG), the intrinsic or lightly doped channel is separated into multiple regions. A single gate covering the entire active channel including the doped lines is still used to control the current flow. Using this BG poly-Si as an active layer and making sure the TFT is designed so that the current flows perpendicularly to the parallel lines of grains, grain boundary effects can be reduced. Reliability, uniformity and the electrical performance of the BG poly-Si TFT are significantly improved compared with the conventional low temperature poly-Si TFT.