Abstract:
A method for determining whether a quantum system comprising a superconducting qubit is occupying a first basis state or a second basis state once a measurement is performed is provided. The method, comprising: applying a signal having a frequency through a transmission line coupled to the superconducting qubit characterized by two distinct, separate, and stable states of differing resonance frequencies each corresponding to the occupation of the first or second basis state prior to measurement; and measuring at least one of an output power or phase at an output port of the transmission line, wherein the measured output power or phase is indicative of whether the superconducting qubit is occupying the first basis state or the second basis state.
Abstract:
A method for determining whether a quantum system comprising a superconducting qubit is occupying a first basis state or a second basis state once a measurement is performed is provided. The method, comprising: applying a signal having a frequency through a transmission line coupled to the superconducting qubit characterized by two distinct, separate, and stable states of differing resonance frequencies each corresponding to the occupation of the first or second basis state prior to measurement; and measuring at least one of an output power or phase at an output port of the transmission line, wherein the measured output power or phase is indicative of whether the superconducting qubit is occupying the first basis state or the second basis state.
Abstract:
A method for measuring the quantum state of a resonator includes, exciting an input port of a circuit with signal, measuring a phase shift of the signal at an output port of the circuit, wherein the resonator is coupled to the input and the output ports, and calculating a quantum state of the resonator as a function of the measured phase shift of the signal.
Abstract:
A method for measuring the quantum state of a resonator includes, exciting an input port of a circuit with signal, measuring a phase shift of the signal at an output port of the circuit, wherein the resonator is coupled to the input and the output ports, and calculating a quantum state of the resonator as a function of the measured phase shift of the signal.
Abstract:
A method for determining whether a quantum system comprising a superconducting qubit is occupying a first basis state or a second basis state once a measurement is performed is provided. The method, comprising: applying a signal having a frequency through a transmission line coupled to the superconducting qubit characterized by two distinct, separate, and stable states of differing resonance frequencies each corresponding to the occupation of the first or second basis state prior to measurement; and measuring at least one of an output power or phase at an output port of the transmission line, wherein the measured output power or phase is indicative of whether the superconducting qubit is occupying the first basis state or the second basis state.
Abstract:
An apparatus for measuring component performance including a feed line having an input port and an output port, a first resonator connected to the feed line, a first Josephson junction device connected to the first resonator and to ground, and a second resonator connected to the feed line and to ground.
Abstract:
Devices and methods are provided that facilitate improved input device performance. The devices and methods utilize a first electrode and a second electrode disposed on a first substrate and a deformable electrode structure. The deformable electrode structure overlaps the first electrode and the second electrode to define a variable capacitance between the first electrode and the second electrode that changes with the deformation of the deformable electrode structure. The deformable electrode structure comprises a spacing component configured to provide spacing between the deformable electrode structure and the first electrode and the second electrode. Finally, a transmission component is configured such that biasing the transmission component causes the deformable electrode structure to deform and change the variable capacitance. A measurement of the variable capacitance can be used to determine force information regarding the force biasing the transmission component.
Abstract:
Devices and methods are provided that facilitate improved input device performance. The devices and methods utilize a first electrode and a second electrode disposed on a first substrate and a deformable electrode structure. The deformable electrode structure overlaps the first electrode and the second electrode to define a variable capacitance between the first electrode and the second electrode that changes with the deformation of the deformable electrode structure. The deformable electrode structure comprises a spacing component configured to provide spacing between the deformable electrode structure and the first electrode and the second electrode. Finally, a transmission component is configured such that biasing the transmission component causes the deformable electrode structure to deform and change the variable capacitance. A measurement of the variable capacitance can be used to determine force information regarding the force biasing the transmission component.