Abstract:
The efficiency of a device for cooling or heating objects on a belt that moves through a path of a helix, in which gaseous cooling or heating medium is circulated within the device, is improved by positioning fans that circulate the cooling or heating medium so that the fans are distanced from the top of the helix.
Abstract:
The efficiency of a device for cooling or heating objects on a belt that moves through a path of a helix, in which gaseous cooling or heating medium is circulated within the device, is improved by positioning fans that circulate the cooling or heating medium so that the fans are distanced from the top of the helix.
Abstract:
Particulate material is cooled by passing into the material a coolant stream of liquid nitrogen having a gaseous product around at least a portion of the liquid nitrogen, wherein the coolant stream is formed outside the particulate material in a nozzle body from which the coolant stream is passed into the particulate material.
Abstract:
A method and system for controlled rate freezing and nucleation of materials is provided. The presently disclosed system and method provides the ability to rapidly cool the materials contained in vials or other containers within a cooling unit via forced convective cooling using a laminar and uniform flow of cryogen in proximity to the plurality of vials disposed within the cooling unit. The rapid cooling of the biological materials is achieved by precisely controlling and adjusting the temperature of the cryogen being introduced to the system as a function of time. The presently disclosed methods to systems also provide nucleation control via temperature quench and depressurized nucleation control.
Abstract:
A method and electrode assembly for treating a substrate with a non-equilibrium plasma in which the electrode assembly has two or more spaced barrier electrodes and a ground electrode spaced apart from the two spaced barrier electrodes for passage of a substrate to be treated. Plasma fluid medium is introduced between the barrier electrodes and is biased to provide a greater flow to an inlet region of the electrode assembly to help inhibit the ingress of air. Each of the barrier electrodes can be provided with central and leg sections having passages for introducing a cooling fluid into one of the leg sections and discharging said cooling fluid from the other of the leg sections. The central section can be provided with a transverse cross-sectional area less than that of the leg sections to increase velocity in the central section.
Abstract:
A method of oxygen-free heat treatment of a steel part in an atmospheric pressure furnace is disclosed. The present method employs an oxygen-free controlled gas atmosphere including hydrogen gas in concentrations between about 1.0 percent to 10.0 percent, a hydrocarbon gas, such as propylene, in concentrations of between about 0.1 percent and 10.0 percent that varies as a function of time, with the balance of the gas atmosphere being nitrogen. The presently disclosed oxygen-free heat treatment process, preferably a carburization process, uses a precisely controlled atmosphere to minimize inter-granular oxidation, eliminate the formation of soot and cementite or other metallic carbides, and avoid hydrogen embrittlement.
Abstract:
A method of oxygen-free heat treatment of a steel part in an atmospheric pressure furnace is disclosed. The present batch treatment process employs an oxygen-free controlled gas atmosphere including hydrogen gas in concentrations between about 1.0 percent to 10.0 percent, a hydrocarbon gas, such as propylene, in concentrations of between about 0.1 percent and 10.0 percent that varies as a function of time, with the balance of the gas atmosphere being nitrogen. The present continuous furnace treatment process employs a plurality of zones with each zone including an oxygen-free controlled gas atmosphere including hydrogen gas in concentrations between about 1.0 percent to 10.0 percent that varies across the different zones, a hydrocarbon gas, such as propylene, in concentrations of between about 0.1 percent and 10.0 percent that varies across the different zones, with the balance of the gas atmosphere within each zone being nitrogen. The presently disclosed oxygen-free heat treatment processes, preferably carburization processes, use a precisely controlled atmosphere to minimize inter-granular oxidation, eliminate the formation of soot and cementite or other metallic carbides, and avoid hydrogen embrittlement.
Abstract:
An impingement cooler or freezer includes at least one impingement section, having a plurality of channeling means defining apertures enabling cooling fluid impingement flow toward and onto objects on a conveyor and defining a channel through which the cooling fluid from the objects flows into a duct which carries the fluid to a unit that chills the fluid, and includes passage means which receives cooling fluid from said apertures and lets it enter the duct after having flowed toward and onto said objects, the fluid being impinged and recirculated by a fan.
Abstract:
A device useful for delivering carbon dioxide snow comprises a supply conduit for providing a flow of pressurized carbon dioxide, a plurality of tubes disposed side by side, each tube having a constant cross-sectional configuration and area throughout its length, each tube having a first end the peripheral edges of which are sealed to the outside of the conduit wall and a second end which is open to the ambient atmosphere, and a plurality of apertures for carbon dioxide to flow through the conduit wall and expand to solids and vapor, there being at least one aperture communicating with the interior of each of said plurality of tubes.
Abstract:
Particulate material is cooled by passing into the material a coolant stream of liquid nitrogen having a gaseous product around at least a portion of the liquid nitrogen, wherein the coolant stream is formed outside the particulate material in a nozzle body from which the coolant stream is passed into the particulate material.