Abstract:
Methods and systems for implementing gestures with sensing devices are disclosed. More particularly, methods and systems related to gesturing with multipoint sensing devices are disclosed.
Abstract:
A force imaging touch pad includes first and second sets of conductive traces separated by a spring membrane. When a force is applied, the spring membrane deforms moving the two sets of traces closer together. The resulting change in mutual capacitance is used to generate an image indicative of the amount or intensity of the applied force. A combined location and force imaging touch pad includes two sets of drive traces, one set of sense traces and a spring membrane. In operation, one of the drive traces is used in combination with the set of sense traces to generate an image of where one or more objects touch the touch pad. The second set of drive traces is used in combination with the sense traces and spring membrane to generate an image of the applied force's strength or intensity.
Abstract:
A light guide panel is disclosed. The panel comprises a plate for dispersing light and at least one light-emitting diode (LED) coupled to the plate for providing the dispersed light. When the panel is coupled to a keyboard, the at least one LED is under a portion of the keyboard such that when the at least one LED is illuminated, the light from the LED does not distract a user. Accordingly, by strategically placing LEDs within the panel and providing the LEDs under appropriate portions of the keyboard, the device utilizing the keyboard can be smaller than when a conventional light guide panel is utilized. In addition, a further improvement in illumination is provided when a mechanism is provided which reflects light escaping from the edges of the panel back into the panel.
Abstract:
Disclosed herein is a multi-functional hand-held device capable of configuring user inputs based on how the device is to be used. Preferably, the multi-functional hand-held device has at most only a few physical buttons, keys, or switches so that its display size can be substantially increased. The multi-functional hand-held device also incorporates a variety of input mechanisms, including touch sensitive screens, touch sensitive housings, display actuators, audio input, etc. The device also incorporates a user-configurable GUI for each of the multiple functions of the devices.
Abstract:
A multipoint touch surface controller is disclosed herein. The controller includes an integrated circuit including output circuitry for driving a capacitive multi-touch sensor and input circuitry for reading the sensor. Also disclosed herein are various noise rejection and dynamic range enhancement techniques that permit the controller to be used with various sensors in various conditions without reconfiguring hardware.
Abstract:
In one exemplary embodiment, a portable computer having a display assembly coupled to a base assembly to alternate between a closed position and an open position. Palm rest areas are formed by a touchpad disposed on the surface of the base assembly. In an alternative embodiment, a touchpad disposed on the base assembly has a width that extends substantially into the palm rests areas of the base assembly.
Abstract:
A printed circuit board (PCB) assembly provides a two layer capacitive trackpad sensor in which an EMI ground grid is interposed among the sensor's capacitive elements on each of its layers. The EMI grid on each of the two layers is electrically coupled via, typically, vias. The described arrangement of sensor elements (capacitor plates) and EMI ground grid traces may be incorporated into a PCB having additional layers (e.g., a four, six or eight layer PCB). If used in this manner, additional vias are provided on the PCB which permit electrical coupling between these “additional layers” and which are electrically isolated from, and shielded by, the EMI ground grid.
Abstract:
An electronic device has a display and has a touch sensitive bezel surrounding the display. Areas on the bezel are designated for controls used to operate the electronic device. Visual guides corresponding to the controls are displayed on the display adjacent the areas of the bezel designated for the controls. Touch data is generated by the bezel when a user touches an area of the bezel. The device determines which of the controls has been selected based on which designated area is associated with the touch data from the bezel. The device then initiates the determined control. The device can have a sensor for determining the orientation of the device. Based on the orientation, the device can alter the areas designated on the bezel for the controls and can alter the location of the visual guides for the display so that they match the altered areas on the bezel.
Abstract:
Disclosed herein is a multi-functional hand-held device capable of configuring user inputs based on how the device is to be used. Preferably, the multi-functional hand-held device has at most only a few physical buttons, keys, or switches so that its display size can be substantially increased. The multi-functional hand-held device also incorporates a variety of input mechanisms, including touch sensitive screens, touch sensitive housings, display actuators, audio input, etc. The device also incorporates a user-configurable GUI for each of the multiple functions of the devices.
Abstract:
In one exemplary embodiment, a portable computer having a display assembly coupled to a base assembly to alternate between a closed position and an open position. Palm rest areas are formed by a touchpad disposed on the surface of the base assembly. In an alternative embodiment, a touchpad disposed on the base assembly has a width that extends substantially into the palm rests areas of the base assembly.